This book should be appropriate for use both as a text and as a reference. This book delivers a "ready-to-go" well-structured product to be employed in developing advanced courses. In this book the readers can find classical and new theoretical methods, open problems and new procedures.

KEY FEATURES

- A systematic compendium of intermediate and advanced methods in biostatistics
- A good balance of rigor in methodology and applications
- Software code based on both the R and SAS software packages to exemplify the presented topics.
- Detailed worked examples, exercises and exam questions, as well as student projects

SELECTED CONTENTS

- Prelude: Preliminary Tools and Foundations
- Characteristic Function Based Inference
- Likelihood Tenet
- Martingale Type Statistics and Their Applications
- Bayes Factor
- A Brief Review of Sequential Methods
- A Brief Review of Receiver Operating Characteristic Curve Analyses
- The Ville and Wald Inequality: Extensions and Applications
- Brief Comments on Confidence Intervals and P-Values
- Empirical Likelihood
- Jackknife and Bootstrap Methods
- Examples of Homework Questions
- Examples of Exams
- Examples of Courses Projects

SAVE 20% when you order online and enter Promo Code FMQ13

FREE standard shipping when you order online.
“This very informative book introduces classical and novel statistical methods that can be used by theoretical and applied biostatisticians to develop efficient solutions for real-world problems encountered in clinical trials and epidemiological studies. The authors provide a detailed discussion of methodological and applied issues in parametric, semiparametric, and nonparametric approaches, including computationally extensive data-driven techniques, such as empirical likelihood, sequential procedures, and bootstrap methods. Many of these techniques are implemented using popular software such as R and SAS.”

— Vlad Dragalin, Professor, Johnson & Johnson Spring House, Pennsylvania

“It is always a pleasure to come across a new book that covers nearly all facets of a branch of science one thought was so broad, so diverse, and so dynamic that no single book could possibly hope to capture all of the fundamentals as well as directions of the field. The topics within the book’s purview—fundamentals of measure-theoretic probability; parametric and nonparametric statistical inference; central limit theorems; basics of martingale theory; Monte Carlo methods; sequential analysis; sequential change-point detection—are all covered with inspiring clarity and precision. The authors are also very thorough and avail themselves of the most recent scholarship. They provide a detailed account of the state of the art, and bring together results that were previously scattered across disparate disciplines. This makes the book more than just a textbook: it is a panoramic companion to the field of Biostatistics. The book is self-contained, and the concise but careful exposition of material makes it accessible to a wide audience. This is appealing to graduate students interested in getting into the field, and also to professors looking to design a course on the subject.”

— Aleksey S. Polunchenko, Department of Mathematical Sciences, State University of New York at Binghamton

This book should be appropriate for use both as a text and as a reference. This book delivers a “ready-to-go” well-structured product to be employed in developing advanced courses.

In this book the readers can find classical and new theoretical methods, open problems, and new procedures.

The book presents biostatistical results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Several of these results can be found only in this book.

• A systematic compendium of intermediate and advanced methods in biostatistics
• A good balance of rigor in methodology and applications
• Software code based on both the R and SAS software packages to exemplify the presented topics
• Detailed worked examples, exercises, and exam questions, as well as student projects

Albert Vexler
Alan Hutson

Statistics in the Health Sciences
Theory, Applications, and Computing

CRC Press
Taylor & Francis Group
www.crcpress.com
Statistics in the Health Sciences
Theory, Applications and Computing
Statistics in the Health Sciences
Theory, Applications and Computing

By
Albert Vexler
The State University of New York at Buffalo, USA
Alan D. Hutson
Roswell Park Cancer Institute, USA
To my parents, Octyabrina and Alexander, and my son, David

Albert Vexler

To my wife, Brenda, and three kids, Nick, Chance, and Trey

Alan D. Hutson
Table of Contents

Preface... xiii
Authors ... xvii

1. Prelude: Preliminary Tools and Foundations... 1
 1.1 Introduction ... 1
 1.2 Limits .. 1
 1.3 Random Variables .. 2
 1.4 Probability Distributions ... 3
 1.5 Commonly Used Parametric Distribution Functions .. 5
 1.6 Expectation and Integration .. 6
 1.7 Basic Modes of Convergence of a Sequence of Random Variables 8
 1.7.1 Convergence in Probability .. 9
 1.7.2 Almost Sure Convergence .. 9
 1.7.3 Convergence in Distribution .. 9
 1.7.4 Convergence in rth Mean ... 10
 1.7.5 O() and o() Revised under Stochastic Regimes ... 10
 1.7.6 Basic Associations between the Modes of Convergence 10
 1.8 Indicator Functions and Their Bounds as Applied to Simple Proofs of Propositions ... 10
 1.9 Taylor’s Theorem ... 12
 1.10 Complex Variables ... 14
 1.11 Statistical Software: R and SAS .. 16
 1.11.1 R Software ... 16
 1.11.2 SAS Software ... 22

2. Characteristic Function–Based Inference... 31
 2.1 Introduction .. 31
 2.2 Elementary Properties of Characteristic Functions ... 32
 2.3 One-to-One Mapping ... 34
 2.3.1 Proof of the Inversion Theorem ... 35
 2.4 Applications .. 40
 2.4.1 Expected Lengths of Random Stopping Times and Renewal Functions in Light of Tauberian Theorems ... 40
 2.4.2 Risk-Efficient Estimation ... 46
 2.4.3 Khinchin’s (or Hinchin’s) Form of the Law of Large Numbers 48
 2.4.4 Analytical Forms of Distribution Functions ... 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.5</td>
<td>Central Limit Theorem</td>
<td>50</td>
</tr>
<tr>
<td>2.4.5.1</td>
<td>Principles of Monte Carlo Simulations</td>
<td>51</td>
</tr>
<tr>
<td>2.4.5.2</td>
<td>That Is the Question: Do Convergence Rates Matter?</td>
<td>54</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Problems of Reconstructing the General Distribution Based on the Distribution of Some Statistics</td>
<td>54</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Extensions and Estimations of Families of Distribution Functions</td>
<td>56</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Why Likelihood? An Intuitive Point of View</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Maximum Likelihood Estimation</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>The Likelihood Ratio</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>The Intrinsic Relationship between the Likelihood Ratio Test Statistic and the Likelihood Ratio of Test Statistics: One More Reason to Use Likelihood</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Maximum Likelihood Ratio</td>
<td>76</td>
</tr>
<tr>
<td>3.7</td>
<td>An Example of Correct Model-Based Likelihood Formation</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Terminology</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>The Optional Stopping Theorem and Its Corollaries: Wald’s Lemma and Doob’s Inequality</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Applications</td>
<td>93</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The Martingale Principle for Testing Statistical Hypotheses</td>
<td>93</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Maximum Likelihood Ratio in Light of the Martingale Concept</td>
<td>96</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Likelihood Ratios Based on Representative Values</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Guaranteed Type I Error Rate Control of the Likelihood Ratio Tests</td>
<td>100</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Retrospective Change Point Detection Policies</td>
<td>100</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>The Cumulative Sum (CUSUM) Technique</td>
<td>101</td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>The Shiryaev–Roberts (SR) Statistic-Based Techniques</td>
<td>102</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Adaptive (Nonanticipating) Maximum Likelihood Estimation</td>
<td>105</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Sequential Change Point Detection Policies</td>
<td>109</td>
</tr>
<tr>
<td>4.5</td>
<td>Transformation of Change Point Detection Methods into a Shiryaev–Roberts Form</td>
<td>113</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Motivation</td>
<td>114</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The Method</td>
<td>115</td>
</tr>
</tbody>
</table>
Table of Contents

4.5.3 CUSUM versus Shirayev–Roberts ... 120
4.5.4 A Nonparametric Example .. 123
4.5.5 Monte Carlo Simulation Study .. 124

5. Bayes Factor .. 129
5.1 Introduction ... 129
5.2 Integrated Most Powerful Tests .. 132
5.3 Bayes Factor .. 136
5.3.1 The Computation of Bayes Factors ... 137
5.3.1.1 Asymptotic Approximations .. 142
5.3.1.2 Simple Monte Carlo, Importance Sampling, and Gaussian Quadrature .. 147
5.3.1.3 Generating Samples from the Posterior 147
5.3.1.4 Combining Simulation and Asymptotic Approximations .. 148
5.3.2 The Choice of Prior Probability Distributions 149
5.3.3 Decision-Making Rules Based on the Bayes Factor 153
5.3.4 A Data Example: Application of the Bayes Factor 158
5.4 Remarks .. 161

6. A Brief Review of Sequential Methods ... 165
6.1 Introduction ... 165
6.2 Two-Stage Designs .. 167
6.3 Sequential Probability Ratio Test ... 169
6.4 The Central Limit Theorem for a Stopping Time 177
6.5 Group Sequential Tests .. 179
6.6 Adaptive Sequential Designs .. 181
6.7 Futility Analysis .. 182
6.8 Post-Sequential Analysis ... 182

7. A Brief Review of Receiver Operating Characteristic Curve Analyses... 185
7.1 Introduction ... 185
7.2 ROC Curve Inference .. 186
7.3 Area under the ROC Curve ... 189
7.3.1 Parametric Approach ... 190
7.3.2 Nonparametric Approach .. 192
7.4 ROC Curve Analysis and Logistic Regression: Comparison and Overestimation ... 193
7.4.1 Retrospective and Prospective ROC 195
7.4.2 Expected Bias of the ROC Curve and Overestimation of the AUC ... 196
7.4.3 Example ... 198
Table of Contents

7.5 Best Combinations Based on Values of Multiple Biomarkers .. 201
 7.5.1 Parametric Method .. 202
 7.5.2 Nonparametric Method 202
7.6 Remarks .. 202

8. The Ville and Wald Inequality: Extensions and Applications 205
 8.1 Introduction .. 205
 8.2 The Ville and Wald inequality .. 208
 8.3 The Ville and Wald Inequality Modified in Terms of Sums of iid Observations .. 209
 8.4 Applications to Statistical Procedures .. 213
 8.4.1 Confidence Sequences and Tests with Uniformly Small Error Probability for the Mean of a Normal Distribution with Known Variance .. 213
 8.4.2 Confidence Sequences for the Median .. 215
 8.4.3 Test with Power One ... 217

9. Brief Comments on Confidence Intervals and p-Values 219
 9.1 Confidence Intervals ... 219
 9.2 p-Values ... 223
 9.2.1 The EPV in the Context of an ROC Curve Analysis 226
 9.2.2 Student’s t-Test versus Welch’s t-Test .. 227
 9.2.3 The Connection between EPV and Power .. 229
 9.2.4 t-Tests versus the Wilcoxon Rank-Sum Test 231
 9.2.5 Discussion ... 236

10. Empirical Likelihood ... 239
 10.1 Introduction .. 239
 10.2 Empirical Likelihood Methods .. 239
 10.3 Techniques for Analyzing Empirical Likelihoods .. 242
 10.3.1 Practical Theoretical Tools for Analyzing ELs ... 249
 10.4 Combining Likelihoods to Construct Composite Tests and to Incorporate the Maximum Data-Driven Information .. 253
 10.5 Bayesians and Empirical Likelihood ... 254
 10.6 Three Key Arguments That Support the Empirical Likelihood Methodology as a Practical Statistical Analysis Tool ... 255
 Appendix ... 256

11. Jackknife and Bootstrap Methods ... 259
 11.1 Introduction ... 259
 11.2 Jackknife Bias Estimation ... 261
 11.3 Jackknife Variance Estimation .. 263
Table of Contents

11.4 Confidence Interval Definition .. 263
11.5 Approximate Confidence Intervals ... 264
11.6 Variance Stabilization ... 265
11.7 Bootstrap Methods ... 266
11.8 Nonparametric Simulation .. 267
11.9 Resampling Algorithms with SAS and R 270
11.10 Bootstrap Confidence Intervals .. 279
11.11 Use of the Edgeworth Expansion to Illustrate the
 Accuracy of Bootstrap Intervals .. 284
11.12 Bootstrap Percentile Intervals ... 288
11.13 Further Refinement of Bootstrap Confidence Intervals 291
11.14 Bootstrap Tilting ... 303

12 Examples of Homework Questions ... 305
12.1 Homework 1 ... 305
12.2 Homework 2 ... 306
12.3 Homework 3 ... 306
12.4 Homework 4 ... 307
12.5 Homework 5 ... 308
12.6 Homeworks 6 and 7 ... 311

13 Examples of Exams .. 315
13.1 Midterm Exams ... 315
 Example 1 ... 315
 Example 2 ... 316
 Example 3 ... 317
 Example 4 ... 318
 Example 5 ... 319
 Example 6 ... 320
 Example 7 ... 322
 Example 8 ... 324
 Example 9 ... 325
13.2 Final Exams ... 326
 Example 1 ... 326
 Example 2 ... 328
 Example 3 ... 329
 Example 4 ... 331
 Example 5 ... 332
 Example 6 ... 333
 Example 7 ... 335
 Example 8 ... 336
 Example 9 ... 339
13.3 Qualifying Exams .. 340
 Example 1 ... 340
 Example 2 ... 342
Table of Contents

Example 3 .. 345
Example 4 .. 348
Example 5 .. 350
Example 6 .. 354
Example 7 .. 357
Example 8 .. 359

14 Examples of Course Projects ... 363
14.1 Change Point Problems in the Model of Logistic Regression Subject to Measurement Errors .. 363
14.2 Bayesian Inference for Best Combinations Based on Values of Multiple Biomarkers .. 363
14.3 Empirical Bayesian Inference for Best Combinations Based on Values of Multiple Biomarkers ... 364
14.4 Best Combinations Based on Log Normally Distributed Values of Multiple Biomarkers .. 364
14.5 Empirical Likelihood Ratio Tests for Parameters of Linear Regressions ... 365
14.6 Penalized Empirical Likelihood Estimation .. 366
14.7 An Improvement of the AUC-Based Interference .. 366
14.8 Composite Estimation of the Mean based on Log-Normally Distributed Observations ... 366

References .. 369
Author Index .. 381
Subject Index .. 387
Preface—Please Read!

In all likelihood, the Universe of Statistical Science is “relatively” or “privately” infinite and expanding in a similar manner to our Universe, satisfying the property of a science that is alive. Hence, it would be absolute impossibility to include everything in one book written by humans. One of our major goals is to provide the readers a small but efficient “probe” that could assist in Statistical Space discoveries.

The primary objective of the this book is to provide a compendium of statistical techniques ranging from classical methods through bootstrap strategies to modern recently developed statistical techniques. These methodologies may be applied to various problems encountered in health-related studies.

Historically, initial developments in statistical science were induced by real-life problems, when appropriate statistical instruments employed empirical arguments. Perhaps, since the eighteenth century, the heavy convolution between mathematics, probability theory, and statistical methods has provided the fundamental structures for correct statistical and biostatistical techniques. However, we cannot ignore a recent trend toward redundant simplifications of statistical considerations via so called “intuitive” and “applied” claims in complex statistical applications. It is our experience that applied statisticians or users often neglect the underlying postulates when implementing formal statistical procedures and with respect to the interpretation of their results. A very important motivation towards writing this book was to better refocus the scientist towards understanding the underpinnings of appropriate statistical inference in a well-rounded fashion. Maybe now is the time to draw more attention of theoretical and applied researchers to methodological standards in statistics and biostatistics? In contrast with
many biostatistical books, we focus on rigorous formal proof schemes and their extensions regarding different statistical principles. We also show the basic ingredients and methods for constructing and examining correct and powerful statistical processes.

The material in the book should be appropriate for use both as a text and as a reference. In our book readers can find classical and new theoretical methods, open problems, and new procedures across a variety of topics for their scholarly investigations. We present results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Our aim is to draw the attention of theoretical statisticians and practitioners in epidemiology and/or clinical research to the necessity of new developments, extensions and investigations related to statistical methods and their applications. In this context, for example, we would like to emphasize for whom is interested in advanced topics the following aspects. Chapter 1 lays out a variety of notations, techniques and foundations basic to the material that is treated in this book. Chapter 2 introduces the powerful analytical instruments that, e.g., consist of principles of Tauberian theorems, including new results, with applications to convolution problems, evaluations of sequential procedures, renewal functions, and risk-efficient estimations. In this chapter we also consider problems of reconstructing the general distribution based on the distribution of some observed statistics. Chapter 3 shows certain nontrivial conclusions regarding the parametric likelihood ratios. Chapter 4 is developed to demonstrate a strong theoretical instrument based on martingales and their statistical applications, which include the martingale principle for testing statistical hypotheses and comparisons between the cumulative sum technique and the Shiryayev–Roberts approach employed in change point detection policies. A part of material shown in Chapter 4 can be found only in this book. Chapter 5 can assist the statistician in developing and analyzing various Bayesian procedures. Chapter 8 provides the fundamental components for constructing unconventional statistical decision-making procedures with power one. Chapter 9 proposes novel approaches to examine, compare, and visualize properties of various statistical tests using correct p-value-based mechanisms. Chapter 10 introduces the empirical likelihood methodology. The theoretical propositions shown in Chapter 10 can lead to a quite mechanical and simple way to investigate properties of nonparametric likelihood-based statistical schemes. Several of these results can be found only in this book. In Chapter 14 one can discover interesting open problems. This book also provides software code based on both the R and SAS statistical software packages to exemplify the statistical methodological topics and their applied aspects.

Indeed, we focused essentially on developing a very informative textbook that introduces classical and novel statistical methods with respect to various biostatistical applications. Towards this end we employ our experience and relevant material obtained via our research and teaching activity across
Preface—Please Read!

10–15 years of biostatistical practice and training Master and PhD level students in the department of biostatistics. This book is intended for graduate students majoring in statistics, biostatistics, epidemiology, health-related sciences, and/or in a field where a statistics concentration is desirable, particularly for those who are interested in formal statistical mechanisms and their evaluations. In this context Chapters 1–10 and 12–14 provides teaching sources for a high level statistical theory course that can be taught in a statistical/biostatistical department. The presented material evolved in conjunction with teaching such a one-semester course at The New York State University at Buffalo. This course, entitled “Theory of Statistical Inference,” has belonged to a set of the four core courses required for our biostatistics PhD program.

This textbook delivers a “ready-to-go” well-structured product to be employed in developing advanced biostatistical courses. We offer lectures, homework questions, and their solutions, examples of midterm, final, and Ph.D. qualifying exams as well as examples of students’ projects.

One of the ideas regarding this book’s development is that we combine presentations of traditional applied and theoretical statistical methods with computationally extensive bootstrap type procedures that are relatively novel data-driven statistical tools. Chapter 11 is proposed to help instructors acquire a statistical course that introduces the Jackknife and Bootstrap methods. The focus is on the statistical functional as the key component of the theoretical developments with applied examples provided to illustrate the corresponding theory.

We strongly suggest to begin lectures by asking students to smile!

It is recommended to start each lecture class by answering students’ inquiries regarding the previously assigned homework problems. In this course, we assume that students are encouraged to present their work in class regarding individually tailored research projects (e.g., Chapter 14). In this manner, the material of the course can be significantly extended.

Our intent is not that this book competes with classical fundamental guides such as, e.g., Bickel and Doksum (2007), Borovkov (1998), and Serfling (2002). In our course, we encourage scholars to read the essential works of the world-renown authors. We aim to present different theoretical approaches that are commonly used in modern statistics and biostatistics to (1) analyze properties of statistical mechanisms; (2) compare statistical procedures; and (3) develop efficient (optimal) statistical schemes. Our target is to provide scholars research seeds to spark new ideas. Towards this end, we demonstrate open problems, basic ingredients in learning complex statistical notations and tools as well as advanced nonconventional methods, even in simple cases of statistical operations, providing “Warning” remarks to show potential difficulties related to the issues that were discussed.

Finally, we would like to note that this book attempts to represent a part of our life that definitely consists of mistakes, stereotypes, puzzles, and so on, that we all love. Thus our book cannot be perfect. We truly thank the reader
for his/her participation in our life! We hope that the presented material can play a role as prior information for various research outputs.

Albert Vexler
Alan D. Hutson
Authors

Dr. Vexler was awarded National Institutes of Health (NIH) grants to develop novel nonparametric data analysis and statistical methodology. His research interests are related to the following subjects: receiver operating characteristic curves analysis; measurement error; optimal designs; regression models; censored data; change point problems; sequential analysis; statistical epidemiology; Bayesian decision-making mechanisms; asymptotic methods of statistics; forecasting; sampling; optimal testing; nonparametric tests; empirical likelihoods; renewal theory; Tauberian theorems; time series; categorical analysis; multivariate analysis; multivariate testing of complex hypotheses; factor and principal component analysis; statistical biomarker evaluations; and best combinations of biomarkers. Dr. Vexler is Associate Editor for Biometrics and Journal of Applied Statistics. These journals belong to the first cohort of academic literature related to the methodology of biostatistical and epidemiological research and clinical trials.
Alan D. Hutson, PhD, received his BA (1988) and MA (1990) in Statistics from the State University of New York (SUNY) at Buffalo. He then worked for Otsuka America Pharmaceuticals for two years as a biostatistician. Dr. Hutson then received his MA (1993) and PhD (1996) in Statistics from the University of Rochester. His PhD advisor was Professor Govind Mudholkar, a world-renown researcher in Statistics and Biostatistics. He was hired as a biostatistician at the University of Florida in 1996 as a Research Assistant Professor and worked his way to a tenured Associate Professor. He had several roles at the University of Florida including Interim Director of the Division of Biostatistics and Director of the General Clinical Research Informatics Core. Dr. Hutson moved to the University at Buffalo in 2002 as an Associate Professor and Chief of the Division of Biostatistics. He was the founding chair of the new Department of Biostatistics in 2003 and became a full professor in 2007. His accomplishments as Chair included the implementation of several new undergraduate and graduate degree programs and a substantial growth in the size and quality of the department faculty and students. In 2005, Dr. Hutson also became Chair of Biostatistics (now Biostatistics and Bioinformatics) at Roswell Park Cancer Institute (RPCI), was appointed Professor of Oncology, and became the Director of the Core Cancer Center Biostatistics Core. Dr. Hutson helped implement the new Bioinformatics Core at RPCI. He recently became the Deputy Group Statistician for the NCI national NRG cancer cooperative group. Dr. Hutson is Fellow of the American Statistical Association. He is Associate Editor of Communications in Statistics, Associate Editor of the Sri Lankan Journal of Applied Statistics, and is a New York State NYSTAR Distinguished Professor. He has membership on several data safety and monitoring boards and has served on several high level scientific review panels. He has over 200 peer-reviewed publications. In 2013, Dr. Hutson was inducted into the Delta Omega Public Health Honor Society, Gamma Lambda Chapter. His methodological work focuses on non-parametric methods for biostatistical applications as it pertains to statistical functionals. He has several years of experience in the design and analysis of clinical trials.
Subject Index

A

Absolute value, 2, 15, 16
Adaptive CUSUM test statistic, 108, 109
Adaptive Gaussian quadrature method, 147
Adaptive maximum likelihood estimation, 105–109
Adaptive maximum likelihood ratio, 107, 108
Adaptive sequential designs, 181
Almost sure convergence, 9, 10
Anti-conservative approach, 135
A posteriori probabilities, 136
Approximate confidence intervals, 264–265
Approximate likelihood technique, 239
A priori information, 129
A priori probabilities, 136
Area Under the ROC curve (AUC), 189–190, 202, 227
estimated, 197
improvement of, 366
nonparametric approach, 192–193
overestimation of, 196–197
parametric approach, 190–192
partial, 203, 226
of student’s t-test, 228
Artificial likelihood-based techniques, 239
ASN, see Average sample number
Asymmetric distributions, 281
Asymptotic approximations, 265
Bayes factor, 142, 154
benefits of, 146
Laplace’s method, 142
Schwarz criterion, 145–147
simulation and, 148–149
variants on Laplace’s method, 142–145
Asymptotic properties of stopping time, 174–177
At most one change-point model, 101
AUC, see Area Under the ROC curve
Autoregressive errors, measurement model with, 80, 307
Average run length (ARL) to false alarm, 112, 113
Average sample number (ASN), 173
Wald approximation, 173–174, 176

B

Bartlett correction, 245
Bayes factor, 79, 99, 103, 124, 136, 145
aplications, 158–161
computation, 137–142
asymptotic approximations,
importance sampling, 147
samples from posterior distributions, 147–148
simple Monte Carlo, 147
decision-making rules, 153–158
implications, 161–162
principles, 132
prior distributions, 149–153
R code, 162–163
Ville and Wald inequality, 209
Bayesian approach, 129
confidence interval estimation, 219, 220
and empirical likelihood, 254–255
equal-tailed confidence interval estimation, 221
frequentist method vs., 130
highest posterior density confidence interval estimation, 221
for hypothesis testing, 136, 151
apriori information, 129
Bayesian inference, 150
best combination of multiple biomarkers, 363–364
empirical, 364
nonparametric, 255
Bayesian information criterion (BIC), 145–146
Bayesian methodology, 129
 advantages of, 131
 criticism of, 153
 information source, 133
Bayesian priors, 31
Bayes theorem, 59, 129, 136, 219, 253
Berry–Esse’en inequality, 286
Best linear combination (BLC) of biomarkers, 201–202
Bias estimation, jackknife method, 261–263
BIC, see Bayesian information criterion
“Big Oh” notation, 2, 10
Biomarker(s), 54
 high density lipoprotein cholesterol, 232
 in medical decision making, 231–232
 multiple, best combination of, 201–202
 Bayesian inference, 363–364
 empirical Bayesian inference, 364
 log-normal distribution, 364
Biostatistical theory, 83
Bivariate normal distribution, 60
Bootstrap consistency, 285, 286
Bootstrap method, 259–260, 266–268
 bias-corrected and accelerated interval, 297–299
 bootstrap-t percentile interval, 280, 288–292
 confidence intervals, 279–284, 291–303
 Edgeworth expansion technique, 279, 284–288
 nonparametric simulation, 267–269
 resampling algorithms with SAS and R codes, 270–279
Bootstrap replications, 260, 268–271, 273, 275, 276
Bootstrap tilting, 303–304
Bootstrap-t percentile interval, 280, 288–292

C
Case-control studies, 164, 189, 231
Cauchy distribution, 35, 57, 68
Cauchy–Schwarz inequality, 11
Central limit theorem (CLT), 174, 205, 215, 310
 characteristic functions, 50–54
 Gaussian, 148
 maximum likelihood estimation, 64–66
 for stopping time, 177–179
Change of measure, 75
Change point detection method
 retrospective, 100–105
 sequential, 109–113
 transformation of, see Shiryaev–Roberts technique
Change point problems, 100, 101, 103, 109, 363
Characteristic exponent, 57
Characteristic function
 algorithm, 40
 central limit theorem, 50–54
 distribution functions
 analytical forms of, 49–50
 reconstruction issues, 54–56
 elementary properties of, 32–34
 law of large numbers, 48–49
 one-to-one mapping, 34–39
 parametric approach, 56–57
 risk-efficient estimation, 46–47
 Tauberian theorems, 40–46
Chebyshev’s inequality, 11, 12, 48, 63, 68, 92, 249
Chi-square distribution, 181, 241, 365
Classical retrospective hypothesis testing, 166
Clinical pulmonary infection score (CPIS), 254
Coefficient of variation, 268, 269
Complex conjugate, 15, 32
Complex variables, 14–16
Composite estimation, of mean, 366–367
Composite hypothesis, 130
Conditional expectation, 85
Conditional power computation, 182
Conditional probability theory, 81
Confidence band, 264
Confidence interval estimation
 Bayesian approach, 219, 220
 equal-tailed, 221
 highest posterior density, 221, 222
Confidence interval estimators, 66, 222
Confidence intervals, 215
 approximate, 264–265
 bootstrap, 279–284, 291–303
 constructions, 214, 216
 definition, 263–264
 estimation by SAS program, 289–291,
 293–302
 hypothesis testing, 222
 posterior probabilities, 220
Confidence sequences, 213, 216
 advantage of, 214
 for median, 215–217
Conjugate distributions, 149
Conjugate priors, 137, 149
Consistency, 60
Continuous mapping theorem, 9
Continuous random variables, 4, 41, 108, 109
Control limits, 110, 111
Control statements, SAS, 26–28
Convergence
 almost sure, 9
 associative properties, 10
 in distribution, 9
 in probability, 9
 rate, 54
 in rth mean, 10
Convolution, 33, 81, 86,
 see also Deconvolution
Correct model-based likelihood
 formation, 80–82
Course projects, examples of, 363–367
Coverage probability, 66
CPIS, see Clinical pulmonary infection
 score
Credible set, 219
Cumulative distribution functions, 152
Cumulative sum (CUSUM) technique
 change point detection, 101–102
 modification of, 126–128
 Shiryayev–Roberts vs., 120–123
D
Decision(-making) rule, 98, 133, 134, 256
 Bayes factor, 153–158
 likelihood ratio–based test, 69–71,
 78, 130
 most powerful, 135
null hypothesis rejection, 133
 sequential probability ratio test,
 170
Deconvolution, 55
Delta method, 190, 191
Density function, 4–6
Dirichlet integral, 37
Discrete random variables, 4
Distribution function, 3, 31, 43
 analytical forms of, 49–50
 characteristic function of, 32
 continuous, 4
 convergence in, 9, 10
 empirical, 7, 188, 261, 266, 268
 extensions and estimations, 56–57
 Laplace transformations of, 31
 of measurement errors, 55
 one-to-one mapping, 34–39
 parametric, 5–6
 reconstruction issues, 54–56
 of standard normal random variable, 66
 sums of random variables, 32, 33
 DO-END statement, 27
 Doob’s decomposition, 114, 116
 Doob’s inequality, 92–93, 100, 205
E
Econometrics, 83
Edgeworth expansion technique, 279,
 284–288
Efron’s formula, 195
Elementary renewal theorem, 46
Elicited prior, 133, 149
EL methods, see Empirical likelihood
 methods
Empirical Bayes(ian), 129
 concept, 130, 141
 inference, 364
 nonparametric version, 255
Empirical distribution function, 7, 188,
 261, 266, 268
Empirical likelihood functions, 222
Empirical likelihood (EL) methods, 303
 Bayesian approach and, 254–255
 classical, 239–241
 and parametric likelihood methods,
 242, 253–254
practical theoretical tools for analyzing, 249–253
software packages, 241–242
as statistical analysis tool, 255–256
techniques for analyzing, 242–248
Empirical likelihood ratio tests, 365–366
Empirical likelihood ratio test statistic, 241, 244–246, 256–257
EPV, see Expected p-value
Equal-tailed confidence interval estimation, 66, 221
Errors, see also Type I error; Type II error
autoregressive, 80
measurement, 55
Monte Carlo, 268
Estimation, see also Overestimation
bias, 261–263
certainty interval, see Confidence interval estimation
James–Stein, 255, 364
maximum likelihood, see Maximum likelihood estimation
mean
composite, 366–367
trimmed, see Trimmed mean estimation
nonanticipating, 105–109, 124–125
risk-efficient, 46–47
unbiased, 167, 183, 273
Euler's formula, 15–16, 32, 36
Exam questions, examples
final exams, 326–340
midterm exams, 326–340
qualifying exams, 326–340
Expectation, 70
conditional, 85
definition of, 6
and integration, 6–8
law of, 86
Expected bias
asymptotic approximation to, 195
of ROC curve, 196–197
Expected p-value (EPV), 225,
see also Partial expected p-value
power and, 229–231
ROC curve analysis, 226–227, 236–237
of t-test, 233–234
Expected significance level, 225
Exponential distribution, 47, 132
density function for, 5, 6
F
False alarm, average run length to, 112, 113
False positive rate (FPR), 194, 195, 203
Fatou–Lebesgue theorem, 205
Fisher information, 64, 139–141
Fisher's combination method, 181
Fisher's z-transformation, 292
Flat prior, 135
FPR, see False positive rate
Frequentist approach, 129, 130, 133
Futility analysis, 168, 182
G
Gambling theory, 83
Gamma distribution, 140
analytical forms of, 49
density function, 5, 6, 138
Gaussian quadrature, 142, 147
Gaussian-type integral, 145
Geometric progression, sum formula for, 42, 43
Goodness-of-fit tests, 307
Grouped jackknife approach, 262
Group sequential tests, 166, 179–181
H
Hessian matrix, 139–140, 143
Highest posterior density confidence interval estimation, 221, 222
Highly peaked integrand, 137
Hinchin's form, law of large numbers, 48–49
Homework questions, examples of, 305–313
Hypothesis
composite, 130
formulation of, 69
nested, 143
null, see Null hypothesis
Hypothesis testing, 75
Bayesian approach for, 136, 151
classical, 166
composite statement, 96
martingale principle, 93–99
most powerful test, 98
problems, 130

I
IF-THEN statement, 26
Importance sampling, 147, 160
Improper distribution, 150
In control process, 110, 113, 114, 123
Independent and identically distributed
(iid) random variables
distribution function of, 54, 56
probability distribution, 4
sum of, 65, 66, 173, 178
in Ville and Wald inequality,
209–213
Indicator function, 7, 10–12, 70, 135, 150
Inference
AUC-based, 366
Bayesian, 150, 255, 363–364
empirical Bayesian, 364
frequentist context, 129
on incomplete bivariate data, 253
ROC curve, 186–189
INFILE statement, 24–25
Infinum, 7
Integrated most powerful test, 132–135
Integration, expectation and, 6–8
Invariant data transformations, 108
Invariant statistics, 106
Invariant transformations, 106
Inversion theorem, 34–39

J
Jackknife method, 259
bias estimation, 261–263
confidence interval
approximate, 264–265
definition, 263–264
homework questions, 312–313
nonparametric estimate of variance, 268
variance estimation, 263
variance stabilization, 265
James–Stein estimation, 255, 364
Jensen’s inequality, 14, 61, 87, 95

K
Kernel function, 192
Khinchin’s form, law of large numbers,
48–49
Kullback–Leibler distance, 304

L
Lagrange method, 221, 240, 242
Lagrange multiplier, 221, 240, 243,
250, 256
Laplace approximation, 142
Laplace distribution, 35
Laplace’s method, 142
modification of, 148
simulated version of, 149
variants on, 142–145
Laplace transformation
of distribution functions, 31
real-valued, 44
Law of iterated expectation, 86
Law of large numbers, 32, 48, 205
Khinchin’s (Hinchin’s) form of, 48–49
outcomes of, 51, 54
strong, 10
weak, 9
Law of the iterated logarithm, 205,
206–207, 214, 217
Law of total expectation, 86
LCL, see Lower control limit
Least squares method, 61
Lebesgue principle, 7
Lebesgue–Stieltjes integral, 7, 8
Likelihood function, 59, 60
Likelihood method, 59–60
artificial/approximate, 239
correct model-based, 80
intuition about, 61–63
parametric, 78
Likelihood ratio (LR), 69–73, 97–99, 170,
see also Log-likelihood ratio;
Maximum likelihood ratio
Likelihood ratio test
bias, 74
decision rule, 69–71
optimality of, 69, 71–72
power, 70, 74
type I error control, 100
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood ratio test statistic, 69, 73–75, 96</td>
</tr>
<tr>
<td>Limits, 1–2, 8</td>
</tr>
<tr>
<td>Linear regressions, empirical likelihood ratio tests for, 365–366</td>
</tr>
<tr>
<td>“Little oh” notation, 2, 10</td>
</tr>
<tr>
<td>Log-empirical likelihood ratios, 246–248</td>
</tr>
<tr>
<td>Logistic regression, 185</td>
</tr>
<tr>
<td>change point problems in, 363</td>
</tr>
<tr>
<td>ROC curve analysis, 193–195</td>
</tr>
<tr>
<td>example, 198–201</td>
</tr>
<tr>
<td>expected bias of ROC, 196–197</td>
</tr>
<tr>
<td>retrospective and prospective ROC, 195–196</td>
</tr>
<tr>
<td>Log likelihood function, 63, 79, 137–141</td>
</tr>
<tr>
<td>Log-likelihood ratio, 61, 143, 144, 173, 310</td>
</tr>
<tr>
<td>Log maximum likelihood, 64</td>
</tr>
<tr>
<td>Log-normal distribution, 5–6</td>
</tr>
<tr>
<td>Log-normally distributed values</td>
</tr>
<tr>
<td>composite estimation of mean, 366–367</td>
</tr>
<tr>
<td>of multiple biomarkers, 364</td>
</tr>
<tr>
<td>Lower confidence band, 264</td>
</tr>
<tr>
<td>Lower control limit (LCL), 111</td>
</tr>
<tr>
<td>LR, see Likelihood ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude of complex number, 15</td>
</tr>
<tr>
<td>Mallow’s distance, 286–287</td>
</tr>
<tr>
<td>Mann–Whitney statistic, 192, 198</td>
</tr>
<tr>
<td>Markov chain Monte Carlo (MCMC) method, 148, 221</td>
</tr>
<tr>
<td>Martingale-based arguments, 79</td>
</tr>
<tr>
<td>Martingale transforms, 116–118, 121</td>
</tr>
<tr>
<td>Martingale type statistics, 83</td>
</tr>
<tr>
<td>adaptive estimators, 105–109</td>
</tr>
<tr>
<td>change point detection, see Change point detection method conditions for, 86</td>
</tr>
<tr>
<td>Doob’s inequality, 92–93</td>
</tr>
<tr>
<td>hypotheses testing, 93–99</td>
</tr>
<tr>
<td>likelihood ratios, 97–99</td>
</tr>
<tr>
<td>maximum likelihood ratio, 96–97</td>
</tr>
<tr>
<td>optional stopping theorem, 91</td>
</tr>
<tr>
<td>reverse martingale, 102, 108</td>
</tr>
<tr>
<td>σ-algebra, 85–86</td>
</tr>
<tr>
<td>stopping time, 88–90</td>
</tr>
<tr>
<td>terminologies, 84–90</td>
</tr>
<tr>
<td>type I error rate control, 100, 106–107</td>
</tr>
<tr>
<td>Wald’s lemma, 92</td>
</tr>
<tr>
<td>Maximum likelihood estimation, 63–68, 131, 142, 183</td>
</tr>
<tr>
<td>Maximum likelihood estimator (MLE), 47, 137, 143–144, 187, 191, 364, 366–367</td>
</tr>
<tr>
<td>adaptive, 105–109</td>
</tr>
<tr>
<td>example, 67–68</td>
</tr>
<tr>
<td>log-likelihood function, 137–139</td>
</tr>
<tr>
<td>as point estimator, 66</td>
</tr>
<tr>
<td>Maximum likelihood ratio (MLR), 76–80, 96–97</td>
</tr>
<tr>
<td>Maximum likelihood ratio test statistic, 76, 79, 96, 105</td>
</tr>
<tr>
<td>MCMC method, see Markov chain Monte Carlo method</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>composite estimation of, 366–367</td>
</tr>
<tr>
<td>rth mean, convergence in, 10</td>
</tr>
<tr>
<td>Measurability, 85</td>
</tr>
<tr>
<td>Measurable random variable, 86</td>
</tr>
<tr>
<td>Measurement errors, 32, 54–56, 363</td>
</tr>
<tr>
<td>Measurement model, with autoregressive errors, 80, 307</td>
</tr>
<tr>
<td>Metropolis–Hastings algorithm, 148</td>
</tr>
<tr>
<td>Minus maximum log-likelihood ratio test statistic, 246–248</td>
</tr>
<tr>
<td>MLE, see Maximum likelihood estimator</td>
</tr>
<tr>
<td>Model selection, 146</td>
</tr>
<tr>
<td>Modulus of complex number, 15</td>
</tr>
<tr>
<td>Monte Carlo (MC) approximations, 102, 106, 229, 232</td>
</tr>
<tr>
<td>coverage probabilities, 223</td>
</tr>
<tr>
<td>error, 268</td>
</tr>
<tr>
<td>Markov chain, 148</td>
</tr>
<tr>
<td>resampling, 304</td>
</tr>
<tr>
<td>roulette game, 90</td>
</tr>
<tr>
<td>simplest, 147</td>
</tr>
<tr>
<td>Monte Carlo power, 54, 198–199, 309</td>
</tr>
<tr>
<td>Monte Carlo simulation, 113, 177, 267–268, 308, 310</td>
</tr>
<tr>
<td>principles of, 51–54</td>
</tr>
<tr>
<td>Shiryaev–Roberts technique, 124–128</td>
</tr>
<tr>
<td>Most powerful decision rule, 135</td>
</tr>
<tr>
<td>Most powerful test of hypothesis testing, 98</td>
</tr>
</tbody>
</table>
integrated, 132–135
likelihood ratio test, 69, 71
Most probable position, 59
Multiple biomarkers, best combination of, 201–202
Bayesian inference, 363–364
empirical Bayesian inference, 364
log-normal distribution, 364
Multiroot procedure, 191
“mvnorm” command, 21–22

N
Nested hypothesis, 143
Newton–Raphson method, 53, 68
Neyman–Pearson lemma, 69, 78, 225, 231
Neyman–Pearson testing concept, 69, 73, 96, 98
Nonanticipating estimation
maximum likelihood estimation, 105–109
Monte Carlo simulation, 124–125
Non-asymptotic upper bound of renewal function, 42
Noninformative prior, 149–150
Nonparametric approach
area under the ROC curve, 192–193, 198
best linear combination of biomarkers, 202
Nonparametric estimation of ROC curve, 187–188
Nonparametric method
Monte Carlo simulation scheme, 128
Shiryayev–Roberts technique, 123–124
Nonparametric simulation, 267–269
Nonparametric testing, 308
Nonparametric tilting, see Bootstrap tilting
Not a number (NaN) values, 18
Null hypothesis, 97
Bayes factor, 153
CUSUM test statistic, 102
empirical likelihood function, 246
p-value, 161–162, 224, 225
rejection of, 73, 79, 102, 130, 158, 170, 222
Numerical integration, 137, 142, 146

O
One-to-one mapping, 31, 34–39
Online change point problem, 109
Optimality, 69, 221
likelihood argument of, 75
of statistical tests, 71–72
“Optim” procedure, 191
Optional stopping theorem, 91
Out of control process, 110, 111, 114, 123
Overestimation, 194–195
area under the ROC curve, 196–197

P
p-value, 76, 97, 132, 223–226, 237
expected, see Expected p-value formulation of, 161–162
null hypothesis, 161–162, 224, 225
prediction intervals for, 225
stochastic aspect of, 225
Parametric approach
area under the ROC curve, 190–192
best linear combination of biomarkers, 202
Parametric characteristic function, 56–57
Parametric distribution functions, 5–6
Parametric likelihood (PL) method, 78, 255
empirical likelihood and, 253–254
Parametric sequential procedures, 167
Parametric statistical procedure, 167
Partial AUC (pAUC), 203, 226
Partial expected p-value (pEPV), 226, 230, 231, 234–235
pAUC, see Partial AUC
Penalized empirical likelihood estimation, 366
pEPV, see Partial expected p-value
Percentile confidence interval, 280–282, 288–291
Pivot, 264
PL method, see Parametric likelihood method
Point estimator, 66
Pooling design, 55–56
Posterior distribution, 131, 146–149, 155
Posterior empirical Bayes (PEB), 364
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior odds, 136, 161</td>
</tr>
<tr>
<td>Post-sequential analysis, 182–183</td>
</tr>
<tr>
<td>Power, 53</td>
</tr>
<tr>
<td>calculation, 54</td>
</tr>
<tr>
<td>expected p-value and, 229–231</td>
</tr>
<tr>
<td>of likelihood ratio test, 70, 74</td>
</tr>
<tr>
<td>Prior (probability) distribution, 131, 149–153, 159–160, 219, 255</td>
</tr>
<tr>
<td>Probability, convergence in, 9, 10</td>
</tr>
<tr>
<td>Probability distribution, 3–4, 149–153</td>
</tr>
<tr>
<td>Probability mass function, 4</td>
</tr>
<tr>
<td>Probability theory, 3, 83, 86</td>
</tr>
<tr>
<td>Probit regression model, 159, 160</td>
</tr>
<tr>
<td>Problematic function, 7</td>
</tr>
<tr>
<td>PROC IML, 29, 275, 277–279</td>
</tr>
<tr>
<td>PROC MEANS</td>
</tr>
<tr>
<td>procedure, 28–29</td>
</tr>
<tr>
<td>WEIGHT statement, 273</td>
</tr>
<tr>
<td>PROC SURVEYSELECT, 270, 274, 277</td>
</tr>
<tr>
<td>PROC UNIVARIATE, 281–282, 289</td>
</tr>
<tr>
<td>Product type chain rule form, 62</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>Quasi-likelihood method, 239</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Radon–Nikodym derivative, 75</td>
</tr>
<tr>
<td>Radon–Nikodym theorem, 75</td>
</tr>
<tr>
<td>RANBIN function, 270, 271</td>
</tr>
<tr>
<td>Random variables, 2–3</td>
</tr>
<tr>
<td>binomial, 270–271</td>
</tr>
<tr>
<td>continuous, 4, 41, 108, 109</td>
</tr>
<tr>
<td>discrete, 4</td>
</tr>
<tr>
<td>measurable, 86</td>
</tr>
<tr>
<td>Rasch model, 79</td>
</tr>
<tr>
<td>Rate of convergence, 54</td>
</tr>
<tr>
<td>Receiver operating characteristic (ROC)</td>
</tr>
<tr>
<td>curve analysis, 185, 364</td>
</tr>
<tr>
<td>area under the ROC curve, 189–193</td>
</tr>
<tr>
<td>in cardiovascular research, 185, 186</td>
</tr>
<tr>
<td>case-control studies, 189</td>
</tr>
<tr>
<td>curve inference, 186–189</td>
</tr>
<tr>
<td>expected bias of, 196–197</td>
</tr>
<tr>
<td>expected p-value and, 225, 226–227</td>
</tr>
<tr>
<td>laboratory diagnostic tests, 185</td>
</tr>
<tr>
<td>logistic regression and, 193–201</td>
</tr>
<tr>
<td>nonparametric estimation of, 187–188</td>
</tr>
<tr>
<td>student’s t-test, 227, 228</td>
</tr>
<tr>
<td>Regularity conditions, 63, 64, 66, 68, 76, 77, 264</td>
</tr>
<tr>
<td>Remainder term, 11, 12, 14, 64, 65, 77, 145, 249, 287</td>
</tr>
<tr>
<td>Renewal function, 40–46, 92</td>
</tr>
<tr>
<td>Renewal theory, 31, 41, 178</td>
</tr>
<tr>
<td>Replications (Bootstrap), 260, 268–271, 273, 275, 276</td>
</tr>
<tr>
<td>Representative method, 99, 132</td>
</tr>
<tr>
<td>Resampling algorithms, 270–279</td>
</tr>
<tr>
<td>Restricted maximum likelihood estimate (REML), 160</td>
</tr>
<tr>
<td>Retrospective change point detection, 100–101</td>
</tr>
<tr>
<td>cumulative sum technique, 101–102</td>
</tr>
<tr>
<td>Shiryayev–Roberts technique, 102–105</td>
</tr>
<tr>
<td>Retrospective error rate, 195</td>
</tr>
<tr>
<td>Retrospective mechanism, 88</td>
</tr>
<tr>
<td>Retrospective studies, 165</td>
</tr>
<tr>
<td>Reverse martingale, 102, 108</td>
</tr>
<tr>
<td>Riemann–Stieltjes integral, 6, 8</td>
</tr>
<tr>
<td>Risk-efficient estimation, 46–47</td>
</tr>
<tr>
<td>Risk function, 46, 47, 71</td>
</tr>
<tr>
<td>R software, 16, see also SAS software</td>
</tr>
<tr>
<td>comments in, 23–24</td>
</tr>
<tr>
<td>data manipulation, 18–21</td>
</tr>
<tr>
<td>comparison operators, 20</td>
</tr>
<tr>
<td>input window, 16–17</td>
</tr>
<tr>
<td>printing data in, 21–22</td>
</tr>
<tr>
<td>r^{th} mean, convergence in, 10</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Sample size</td>
</tr>
<tr>
<td>calculation, 54, 152</td>
</tr>
<tr>
<td>expected, 16, 168, 169, 173, 218</td>
</tr>
<tr>
<td>Sampling</td>
</tr>
<tr>
<td>importance, 147, 160</td>
</tr>
<tr>
<td>techniques, 149</td>
</tr>
<tr>
<td>SAS/IML, 278</td>
</tr>
<tr>
<td>SAS software, 16, 22</td>
</tr>
<tr>
<td>comments in, 23–24</td>
</tr>
<tr>
<td>comparison operators, 27</td>
</tr>
</tbody>
</table>
control statements, 26–28
data import, 24–25
data manipulation, 25–28
data printing, 28
interface, 22, 23
macros, 275–276
numeric functions, 26
resampling algorithms with, 270–279
summarizing data in, 28–29
trimmed mean and confidence
interval estimation, 289–291,
293–302
variables and data sets, 23
Schwarz criterion, 145–147, 154
Semi-parametric confidence interval,
282
Sequential analysis methodology
adaptive sequential designs, 181
advantages, 166
central limit theorem for stopping
time, 177–179
futility analysis, 182
group sequential tests, 179–181
post-sequential analysis, 182–183
regulated trials, 166–167
sequential element, 165
sequential probability ratio test,
169–177
two-stage designs, 167–169
Sequential change point detection,
109–113
Sequential element, 165
Sequential methods, 167, 179
Sequential probability ratio test (SPRT),
169, 309–310
asymptotic properties of stopping
time, 174–177
goal of, 170
sampling process, 171
stopping boundaries, 172–173
Wald approximation to average
sample number, 173–174
Sequential procedures, 83
guidelines for, 166
testing, 167
Sequential trial, 166, 167, 183
Shapiro–Wilk test for normality, 167, 183
Shewhart chart (X-bar chart), 111
Shiryaev–Roberts (SR) technique
change point detection, 102–105, 113
cumulative sum vs., 120–123
method, 115–120
Monte Carlo simulation study,
124–128
motivation, 114–115
nonparametric example, 123–124
σ –algebra, 85–86
Simon's two-stage designs, 168–169
Simple representative method, 99, 132
Simplest Monte Carlo integration, 147
Skewed distributions, 5
Slutsky's theorem, 77
Smooth statistics, 263, 280
SPRT, see Sequential probability ratio
test
SR technique, see Shiryaev–Roberts
technique
Stabilization, variance, 265
Standardizing decision-making policies,
223
Statistical decision-making theory, 69
Statistical functionals, 261, 266–268, 287,
303
Statistical hypotheses testing,
martingale principle, 93–99
Statistical literature, 59
Statistical sequential schemes, 88, 167,
178
Statistical significance, 223
Stochastic curtailment approach, 182
Stochastic processes analysis, 83
Stopping times (rules), 41, 47, 83, 88–89,
92, 112, 124, 126, 173
asymptotic properties, 174–177
central limit theorem, 177–179
Ville and Wald inequality, 208
Student's t-test, 227–229
Study designs, 54, 55
Submartingale
criterion, 86–87
H0-submartingale, 97, 114
H1-submartingale, 95, 96, 103
P–submartingale, 115, 116, 121, 122
Sufficiency, notion of, 60
Sum of iid random variables, 65, 66,
173, 178
Subject Index

Supermartingale, 86–87
Supremum, 7, 106
Symmetric distribution, 179, 211, 281, 287

T
Tauberian theorems, 32, 40–46
Tauberian-type propositions, 44–46
Taylor's theorem, 12–14, 43, 45, 64, 65, 191
TBARS measurement, 311–313
Test statistic
 adaptive cumulative sum, 108, 109
 adaptive maximum likelihood ratio, 107, 108
 definition of, 99
 empirical likelihood ratio, 241, 244–246, 256–257
 likelihood ratio, 69, 73–75, 96
 maximum likelihood ratio, 76, 79, 96, 105
 minus maximum log-likelihood ratio, 246
Test with power one, 217–218
“Tilde/twiddle” notation, 2
Training samples, 194
Trimmed mean estimation
 PROC UNIVARIATE, 289–290
 SAS program, 289–291, 293–302
Trimmed mean statistic, 280–282
Trivial inequality, 70
True positive rate, 194, 195
t-tests, Wilcoxon rank-sum test vs., 231–236
Two-sample nonparametric testing, 308–309
Two schools of thought, 129
Two-stage acceptance sampling plan, 168
Two-stage designs, sequential analysis, 167–169
Type I error rate(s), 53, 167
 empirical likelihood ratio test, 242
 of maximum likelihood ratio test, 76
 notion of, 129
 probability of, 70, 73
Simon's two-stage designs, 168
 in statistical decision-making, 69, 72
 test with power one, 217–218
Type I error rate control, 100, 106–107, 134, 145, 156, 207, 365–366
Type II error probability, 73, 74
 test with power one, 218
Type II error rate, 168
 Simon's two-stage designs, 168–169

U
Unbiased statistical test, 230
Uniroot function, 52, 68, 175, 312
Unit step function, 266
Upper control limit (UCL), 111
U-statistic theory, 192, 198

V
Validation samples, 194
VAP, see Ventilator-associated pneumonia
Variance, 155
 Bayes factor vs., 160, 161
 estimation, 263, 268
 population, 262
 stabilization, 265
Variants on Laplace’s method, 142–145
Ventilator-associated pneumonia (VAP), 254
Ville and Wald inequality, 205–206, 208
 Bayes factor, 209
 distribution function, 210–211
 statistical significance, 213–218
 in sums of iid observations, 209–213
 symmetric distribution function, 211–213

W
Wald approximation to average sample number, 173–174, 176
Wald martingale, 307
Wald’s lemma, 44, 92
WEIGHT statement, 273
Welch’s t-test, 227–229
Subject Index

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilcoxon rank-sum test, 225, 231–236</td>
<td>Youden index, 202, 203</td>
</tr>
<tr>
<td>Wilks' theorem, 76, 78, 106, 241, 245, 365</td>
<td></td>
</tr>
<tr>
<td>X-chart, 110</td>
<td></td>
</tr>
<tr>
<td>Z-interval, 265</td>
<td></td>
</tr>
</tbody>
</table>