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Abstract

The aim is twofold: (1) to indicate that the one-sample Wilcoxon signed
rank test cannot be used directly when a center of symmetry is unknown;
and (2) to propose and examine correct schemes for applying the Wilcoxon
signed rank test with an estimated center of symmetry. It turns out that
the Wilcoxon signed rank test and the sign test for symmetry do not provide
valued outputs, when unknown centers of symmetry are estimated using un-
derlying data. In such scenarios, these tests are not null-distribution-free and
break down completely even based on samples with large numbers of obser-
vations. Theoretical propositions are shown to propose a simple correction
of the corresponding R built-in function, employing p-values-based proce-
dures. To perform the proposed algorithms, we develop new customized
procedures for estimating the integrated squares of densities, probability
weighted moments and special values of density functions. It is shown that
the proposed testing strategies have Type I error rates under good control
as well as exhibit high and stable power characteristics.

The proposed algorithms can be applied for modifying Wilcoxon tests
type procedures in different statistical software.

Keywords: Density estimation, Integrated square of a density,
Nonparametric test for symmetry, p-value, Probability weighted moments,
R, Wilcoxon test

1. Introduction

In order to evaluate the goodness-of-fit of the null hypothesis, say H0,
that assumes n independent and identically distributed data points, say
X1, . . . , Xn, are from an unknown symmetric distribution function F , of-
ten users of R (R Core Team, 2016) employ the simple built-in function
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wilcox.test(), e.g., Kloke and McKean (2015); Vexler et al. (2017a). The hy-
pothesis H0 claims X1 − µ and µ − X1 are identically distributed, meaning
that X1, . . . , Xn have a symmetric distribution about the fixed center µ. The
alternative hypothesis H1 says that F is an asymmetric distribution. If µ is
known, we can use transformed observations Y1 = X1 − µ, . . . , Yn = Xn − µ,
assessing H0 via (Y1, . . . , Yn)-based wilcox.test() with µ = 0. In various
practical applications, investigators are often interested in testing H0 when
a value of the center of symmetry µ is unknown (e.g., Gastwirth, 1971; Bhat-
tacharya et al., 1982; Kloke and McKean, 2015). We can also remark that
the natural location parameter for F is µ. For more details regarding this
claim as well as methods for estimating µ, we refer the reader to Bickel and
Lehmann (2012).

Note that, according to the wilcox.test()’s manual, this function contains
an argument described in the form "mu: a number specifying an optional
parameter used to form the null hypothesis". Then, it seems that we can try
to use an estimator of µ, performing wilcox.test(), if µ is unknown. In this
framework, for an illustrative example, we conducted the following Monte
Carlo experiment, employing the simple R code:

MC<-25000 #number of the Monte Carlo generations of data points
n <- 500
pvalue <- array()
for(mc in 1:MC){

x <- rnorm(n,1,1)
pvalue[mc] <- wilcox.test(x, mu=mean(x))$p.value

}
print(mean(1*(pvalue<0.05)))

We drew 25, 000 samples of X1, . . . , X500 from the symmetric N(1, 1) dis-
tribution in order to implement the Wilcoxon procedure based on X1, . . . , X500
at 5% level of significance. The location parameter was estimated using the
sample mean, µ̂ = X̄n =

∑n
i=1 Xi/n. In this study, wilcox.test() did not

reject the null hypothesis in all generated events (i.e., the Monte Carlo
Type I error rate was 0), whereas the corresponding Type I Error rate
was expected to be 0.05. In a similar manner, we considered, for exam-
ple, Xi = V1i + V2i, i ∈ {1, . . . , 500}, where V1i ∼ N(1, 1) and V2i ∼ Exp(1),
i.e. X1, . . . , X500 are generated from an alternative asymmetric distribution.
The corresponding Monte Carlo power had a value of 0.0044, indicating that
the applied Wilcoxon signed-rank test has been biased, in this case.

In the example above, the sample mean was used to estimate µ. Ac-
cording to Fisher (1995, Section 4.2) and Kloke and McKean (2015, Section
2.3.1), one can also evaluate the symmetry center µ, applying the sample
median type Hodges-Lehmann estimator. It is not difficult to see that the
change in the µ estimation manner or/and an increase of n cannot im-
prove the Wilcoxon procedure. This issue is in effect, since, under H0,
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the Wilcoxon test statistic with the estimated center of symmetry is not
distribution-free, having distributions that depends significantly on under-
lying data distributions. The asymptotic (as n is large) distribution of the
Wilcoxon test statistic is subject to using a known value of µ or its under-
lying data-based estimator involved in the test statistic’s structure. Thus,
in general, critical values of the Wilcoxon test cannot be tabulated, when µ
is unknown.

This paper focuses on developing a simple correction to the R function
wilcox.test() and does not target to introduce an essentially new decision-
making policy for assessing H0, when µ is unknown. In this context, it
can be noted that in the considered nonparametric statement of the testing
problem, there are no most powerful tests. We show that the proposed
testing strategies have Type I error rates under well control as well as exhibit
high and stable power characteristics.

The present note provides the asymptotic null distribution of the Wilcoxon
signed rank test statistic, in which structure the center of symmetry is es-
timated. We show corresponding theoretical results in Section 2 in order
to assert that, under H0, the wilcox.test()’s statistic with known µ and
the wilcox.test()’s statistic with estimated µ are not identically distributed,
since their variances are significantly different. We also refer the interested
reader to proof schemes of the shown results, since they are new, simple and
can be employed for considering different ranks-based tests with estimated
parameters. In Section 3 we apply Section 2’s outputs to obtain correct
decisions via wilcox.test() with estimated µ, in a simple manner.

The derived asymptotic distributions of the Wilcoxon test statistics with
an estimated center of symmetry depend on several unknown underlying
data characteristics including the integrated square of X1’s density and a
probability weighted moment of X1. Development of estimating tools for
such quantities is of a theoretical and practical interest (e.g., Hall and Mar-
ron, 1987; Giné and Nickl, 2008; Vexler et al., 2017b). In Section 3 we
propose new customized procedures for estimating the integrated squares
of densities, probability weighted moments and special values of density
functions. For example, under H0, we employ a technique based on char-
acteristic functions and the Parseval–Plancherel identity in order to present
a new procedure, significantly simplifying the estimation of the integrated
square of X1’s density.

In Section 4, we numerically evaluate the performance of the proposed
procedures via a Monte Carlo study. To exemplify a practical application
of the introduced testing strategies, a real data based example is reported
in Section 5. This paper concludes with a short discussion in Section 6. All
the proofs are relegated to the Appendix.

In the present paper, we introduce algorithms for computing the p-
values of the one-sample Wilcoxon tests when the center of symmetry is
unknown. We treat strategies that can be suitable for analyzing paired ob-
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servations. The proposed methods can be easily applied for modifying rank
based decision-making procedures in different statistical software.

2. Background and Theoretical Results

The classical one-sample Wilcoxon signed rank test can be conducted
using the intrinsic R function wilcox.test() that employs the statistic

Wn =
n∑

i=1
R (|Xi − µ|) I (Xi > µ) ,

where R (|Xi − µ|) means the rank of |Xi − µ| among |X1 − µ|, . . . , |Xn − µ|
and I(.) is the indicator function. This statistic can be represented in the
Walsh form

Wn =
n∑

i=1

n∑
j=i

I (Zij > µ) ,

where the Walsh average Zij = 0.5 (Xi + Xj).
If µ were known, the test statistic Wn has an H0-distribution that does

not depend on underlying data distributions. In this case, when n is not
relatively large, the critical values of Wn can be pre-tabulated, whereas, for
large values of n, in order to conduct the Wn-based test, we can apply the
asymptotic result

lim
n→∞

Pr0

[
n(n + 1)/4 − Wn

{n(n + 1)(2n + 1)/24}0.5 < z

]
= (2π)−0.5

∫ z

−∞
e−0.5u2

du,

where z is a fixed argument, E0 (Wn) = n(n + 1)/4, var0 (Wn) = n(n +
1)(2n + 1)/24, and the notations Pr0, E0, var0 denote the probability mea-
sure, expectation and variance under H0, respectively (e.g., Hollander et al.,
2013). This provides the strategy to execute the wilcox.test() procedure
that is displayed in the corresponding R manual as "By default (if exact is
not specified), an exact p-value is computed if the samples contain less than
50 finite values and there are no ties. Otherwise, a normal approximation is
used."

In general situations, a practical limitation in applying Wn to test for
symmetry is that the center µ is assumed to be known. In a similar manner
to Gastwirth (1971), we propose to estimate µ by the sample mean X̄n, and
then the modified test statistic is

W ∗
n =

n∑
i=1

n∑
j=i

I
(
Zij > X̄n

)
.

It is clear that, under the null hypothesis, W ∗
n is distributed dependently on

the H0-underlying data distribution. In this section, we evaluate asymptotic
properties of the proposed test statistic W ∗

n .
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Let F (x) be an absolutely continuous distribution function of X1, . . . , Xn

with density f(x). Assume f(x) and df(x)/dx are continues at µ, where,
under H0, µ is both the mean, E0 (X1) = µ, and the median of F . We have
that

fZ(x) = 2
∫ ∞

−∞
f(u)f(2x − u)du.

is the density function of the Walsh average Zij . In this framework, the
following proposition presents the mean and variance of the proposed test
statistic W ∗

n .

Proposition 1. Assume that µ = E(X1), qX = Pr (X1 > µ), qZ = Pr (Z12 > µ)
and E|X1|4 < ∞. Then, for large values of n, we have

E (W ∗
n) = n(n − 1)

2 qZ + nqX + o
(
n3/2

)
,

var (W ∗
n) = Kn − n(n − 1)(n − 3)fZ(µ) E {(Z12 − µ) I(Z12 > µ)}

+ σ2(n − 1)(n − 2)(n − 3)(n − 4)
4n

f2
Z(µ) + o

(
n3
)

,

where σ2 = var (X1) and

Kn =
(
1 − 2qZ − q2

Z − 2L1
)

n3

+
(5

2q2
Z + 13

2 qZ − 2qZ qX + 2(1 − qX) + 6L1 − 2L2 − 3
)

n2

+
(

2qZqX − 3
2q2

Z − q2
X − 9

2qZ + 3qX − 4L1 + 2L2

)
n,

with

L1 =
∫ ∞

−∞
F (µ + u)F (µ − u) − {1 − F (µ − u)}2 dF (µ + u),

L2 =
∫ ∞

0
F (µ − u)dF (µ + u).

In the remark below, we consider Proposition 1 when H0 is true.

Remark 1. Note that a simple exercise using X1’s and Z12’s characteristic
functions can show qX = qZ = 0.5, under H0. In this case, defining FY as a
distribution function of Y1 = X1 − µ and having FY (−u) = 1 − FY (u), we
can obtain that

L1 =
∫ ∞

−∞

[
FY (u)FY (−u) − {1 − FY (−u)}2

]
dFY (u)

=
∫ ∞

−∞

[
FY (u) {1 − FY (u)} − F 2

Y (u)
]

dFY (u) =
∫ 1

0

(
s − 2s2

)
ds = −1

6 ,

L2 =
∫ ∞

0
F (µ − u)dF (µ + u) =

∫ ∞

0
{1 − FY (u)} dFY (u) =

∫ 1

1
2

(1 − s)ds = 1
8 .
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Then, under H0, Kn = n(n + 1)(2n + 1)/24 that equals to the H0-variance
of Wn, var0 (Wn). Thus, for large values of n, we can conclude that

E0 (W ∗
n) = n(n + 1)

4 + o
(
n3/2

)
,

var0 (W ∗
n) = n(n + 1)(2n + 1)

24 − n(n − 1)(n − 3)fZ(µ) E {(Z12 − µ) I(Z12 > µ)}

+ σ2(n − 1)(n − 2)(n − 3)(n − 4)
4n

f2
Z(µ) + o

(
n3
)

.

Proposition 1 confirms that E0 (W ∗
n) and var0 (W ∗

n) depend on charac-
teristics related to the H0-underlying data distribution, and that var0 (W ∗

n)
is significantly different from var0 (Wn) when qX = qZ = 0.5. Proposition 1
yields the following result.

Proposition 2. Let the conditions of Proposition 1 be satisfied, then

lim
n→∞

Pr
{

0.5n(n − 1)qZ + nqX − W ∗
n

(Vn)0.5 < z

}
= (2π)−0.5

∫ z

−∞
e−0.5u2

du,

where

Vn = Kn − n(n − 1)(n − 3)fZ(µ) E {(Z12 − µ) I(Z12 > µ)}

+ σ2(n − 1)(n − 2)(n − 3)(n − 4)
4n

f2
Z(µ),

and Kn is defined in Proposition 1.

The Appendix consists of the proofs of Propositions 1 and 2 that can be
modified in order to treat different ranks-based tests with estimated param-
eters.

Proposition 2 claims that the modified Wilcoxon signed rank test statis-
tic W ∗

n is asymptotically normal under H0 when qX = qZ = 0.5 and under
alternatives when qZ ̸= 0.5. This is applied in the next section to provide
methods for correctly implementing the wilcox.test() procedure with an un-
known center of symmetry. Proposition 2 can be also used to calculate the
asymptotic power of the W ∗

n -based test.
For the sake of completeness, we consider the sign test for symmetry. To

test the hypothesis H0, when µ is unknown, we can employ the statistic

S∗
n =

n∑
i=1

I
(
Xi < X̄n

)
.

In order to control the Type I Error rate of the S∗
n-based test, the following

known asymptotic result can be applied.
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Proposition 3 (Gastwirth 1971). Assume F (x), the distribution function
of X1, is an absolutely continuous function with mean µ and variance σ2 and
f(x) = dF (x)/dx is continuous at µ, then the statistic n−0.5 (S∗

n − npX) is
asymptotically normally distributed with mean 0 and variance

(1 − pX)pX + σ2f2(µ) + 2f(µ)E {(µ − X1) I(X1 > µ)} ,

where pX = F (µ).

3. Algorithms

The large-sample approximations shown in Propositions 2 and 3 can im-
ply computing the p-values of the one-sample Wilcoxon tests. The problem
is that the asymptotic H0-assertions of Propositions 2 and 3 involve the
parameters

θ = fZ(µ), τ = E0 {(Z12 − µ) I(Z12 > µ)} , ω = f(µ)

that are unknown in general applications. To overcome this problem, we
focus on developing procedures for estimating θ, τ and ω in Sections 3.1,
3.2, 3.3.

The proposed estimation schemes and Section 2’s material are applied in
Section 3.4 to present codes for correctly implementing the Wilcoxon tests
when µ is unknown.

3.1. Estimation of θ = fZ (µ), under H0

It is clear that, under H0,

θ = fZ(µ) = 2
∫ ∞

−∞
f(µ + z)f(µ − z)dz

= 2
∫ ∞

−∞
f2(µ − z)dz = 2

∫ ∞

−∞
f2(z)dz.

There is a good amount of publications regarding kernel-based estimators
of the integrated squares of densities (e.g., Hall and Marron, 1987; Giné and
Nickl, 2008), in general forms. We propose a new procedure, significantly
simplifying the estimation of fZ(µ) via a symmetry property of f . Toward
this end, we represent

θ = 2
∫ ∞

−∞
f2

Y (z)dz,

where fY is a density function of Y1 = X1 − µ that is symmetric around 0.
In this case, the Parseval–Plancherel identity states that

θ = 2
∫ ∞

−∞
f2

Y (z)dz = 2
∫ ∞

−∞
|ϕ(−2πt)|2 dt,
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where ϕ(t) is a characteristic function of Y1 and then ϕ(t) = E cos (tY1),
since the random variable Y1 is symmetric. This yields

θ = 2
∫ ∞

−∞
{E cos (2πtY1)}2 dt.

Thus, we obtain the empirical estimator, say θ̂, of fZ(µ) in the form

θ̂ = 2
∫ Tn

−Tn

{
n−1

n∑
i=1

cos
(
2πt(Xi − X̄n)

)}2

dt

= 2
∫ Tn

−Tn

n−2
n∑

i=1

n∑
j=1

cos
(
2πt(Xi − X̄n)

)
cos

(
2πt(Xj − X̄n)

)
dt

= 2n−2
n∑

i=1

n∑
j=1

∫ Tn

−Tn

cos
(
2πt(Xi − X̄n)

)
cos

(
2πt(Xj − X̄n)

)
dt

= 1
n2

n∑
i=1

n∑
j=1

sin (2πTn(Xi − Xj))
π(Xi − Xj) +

sin
(
2πTn(Xi + Xj − 2X̄n)

)
π(Xi + Xj − 2X̄n)

 ,

where Tn → ∞ as n → ∞. According to the literature related to esti-
mating density functions using kernel and empirical characteristic functions
(Feuerverger and Mureika, 1977; Chiu, 1996; Venables and Ripley, 2013, p.
130), as well as employing various Monte Carlo experiments based on more
than 500 different scenarios of symmetric distributions and a variety of fixed
sample sizes n, we suggest to select Tn = log(n)/G, where G can be defined
by using the code:

r <- quantile(x, c(0.25, 0.75))
h <- (r[2] - r[1])/1.34
G<-( 3 * 1.06 * min(sqrt(var(x)), h))

(Here x is an array of data points.) Note also that, we can write

1
n2

n∑
i=1

n∑
j=1

sin (2πTn(Xi − Xj))
π(Xi − Xj) ≃ 1

n2

n∑
i=1

n∑
j=1,j ̸=i

sin (2πTn(Xi − Xj))
π(Xi − Xj) + 2Tn

n
.

3.2. Estimation of τ = E0 {(Z12 − µ) I(Z12 > µ)}
Since the random variables X1 and X2 are independent and identically

distributed,

E {(Z12 − µ) I(Z12 > µ)} = 0.5 {E (X1 − µ) I (X2 − µ > µ − X1)
+ E (X2 − µ) I (X1 − µ > µ − X2)} = 0.5 {E (X1 − µ) I (X2 − µ > µ − X1)
+ E (X1 − µ) I (X2 − µ > µ − X1)} .
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Under H0, we have E0 (X1 − µ) = 0 and the random variables X1 − µ,
µ − X1 are identically distributed. Then, defining the distribution function
F̃X1−µ(u) = Pr (X1 − µ < u), we obtain

τ = E0 (µ − X1) F̃X1−µ (µ − X1) = E0 (X1 − µ) F̃X1−µ (X1 − µ) .

Thus, using the empirical distribution function based on X1−X̄, . . . , Xn−X̄
instead of F̃X1−µ, we define the empirical estimator, say τ̂ , of τ in the simple
form

τ̂ = n−2
n∑

i=1
iV(i),

where V(1) < V(2) < . . . < V(n) are the order statistics based on X1 −
X̄, . . . , Xn − X̄.

Note that τ has a form of a probability weighted moment. In this context,
for an extensive review and properties related to τ̂ , we refer the reader to,
e.g., Vexler et al. (2017b).

3.3. Estimation of ω = f (µ)
It is clear that a straightforward way to estimate ω is via the R code:

m <- mean(x);
hat_w <- density(x, from=m,to=m)[[2]][1]

However, perhaps, to estimate the point ω, we do not need to evaluate the
curve f(u). The idea is to simplify and to make the estimation of ω more
accurate employing the following principle. The sample median has the
variance var

(
X(n/2)

)
≃ 1/

(
4nf2(µ)

)
, for relatively large values of n. Then,

we can estimate ω using

ω̂2 = (4nH)−1 ,

where H is an estimator of var
(
X(n/2)

)
. Price and Bonett (2001) dis-

played an excellent review regarding consistent distribution-free estimators
of var

(
X(n/2)

)
. Thus, we propose to estimate ω, conducting the procedure:

m <- mean(x)
a <- 1 * (x > m - n ^ (-1 / 5)) * (x < m + n ^ (-1 / 5))
D <- sum(a)
A <- max(c(1, D))
VHW <- (n ^ (3 / 10) / A) ^ 2
hat_w <- sqrt(1 / (4 * n * VHW))

in the manner of Hollander and Wolfe (see Equation (5) in Price and Bonett,
2001).

Our extensive Monte Carlo experiments confirm that the presented es-
timating scheme for ω demonstrates efficient and stable characteristics.
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3.4. The ready-to-use modified tests
Sections 2, 3.1, 3.2 and 3.3 complete the material that provides correct

implementations of the signed-rank Wilcoxon test and the sign test when a
center of symmetry is unknown. This results in the following proposed codes:

Procedure A: The modified signed-rank Wilcoxon test
# x is a numeric vector of data values
m <- mean(x)
n <- length(x)
W <- wilcox.test(x, mu = m)$statistic
xc <- x - m
# T_n selection
r <- quantile(x, c(0.25, 0.75))
h <- (r[2] - r[1]) / 1.34
Tn <- log(n) / (3 * 1.06 * min(sqrt(var(x)), h))
# Estimation of theta
S <- function(u)
(sum(sin(2*pi*(xc[xc!=u]-u)*Tn) / (2*pi*(xc[xc!= u]-u)))
+ sum(sin(2*pi*(xc+u)*Tn) / (2*pi*(xc+u))))
SV <- Vectorize(S)
hat_theta <- 2 * sum(SV(xc)) / n^2 + 2*Tn/n
# Estimation of tau
xs <- sort(xc)
S1 <- seq(from = 1, to = n, by = 1)
hat_tau <- sum(xs * S1) / n^2
E <- n * (n + 1) / 4
sigma2 <- var(x)
V <- (n*(n+1)*(2*n+1)/24 - n*(n-1)*(n-3)*hat_theta*hat_tau
+(n-1)*(n-2)*(n-3)*(n-4)*sigma2/(4*n)*hat_theta^2)
# The resulting p-value
pval <- 2 * (1 - pnorm(abs(E - W) / sqrt(V)))

as well as

Procedure B: The modified sign test
m <- mean(x)
n <- length(x)
# The test statistic
S <- sum(1 * (x < m))
# Estimation of w
a <- 1 * (x > m - n ^ (-1 / 5)) * (x < m + n ^ (-1 / 5))
D <- sum(a)
A <- max(c(1, D))
VHW <- (n ^ (3 / 10) / A) ^ 2
hat_w <- sqrt(1 / (4 * n * VHW))
CE <- mean((x - m) * (x < m))
V <- 1 / 4 + var(x) * hat_w ^ 2 + 2 * hat_w * CE
# The resulting p-value
pval <- 2 * (1 - pnorm(abs(S - n / 2) / sqrt(n * V)))
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In these procedures, the p-values are calculated in a manner that cor-
responds to two-sided tests. We use that if a test statistic, say M , is null-
distributed as FM (u) = Pr0(M < u) and the decision-making rule is "to
reject the null hypothesis, for large values of |M |", then the p-value is
1 − F|M |(|MX |), where the distribution function F|M |(u) = Pr0(|M | < u)
and |MX | means a fixed value of |M | conducted by using underlying data.
In this case, F|M |(u) = FM (u)−FM (−u) implies p−value = 1−FM (|MX |)+
FM (−|MX |) and then p − value = 1 − FM (|MX |) + 1 − FM (|MX |), if M
is symmetric about zero under the null hypothesis. The random variable
p − value = 1 − F|M |(|MX |) is Uniform(0,1)-distributed, under the null hy-
pothesis. Thus, to fix the significance level of the test to be α, we can
reject H0, if p − value < α, controlling the related Type I Error rate via
Pr0(p − value < α) = α.

Remark 2. In this paper, we focus on the null hypothesis H0 that assumes
X1 −µ has a symmetric about 0 distribution. The procedures A (the signed-
rank Wilcoxon test) and B (the sign test) presented above test for H0 vs.
H1, where H1 says "X1 −µ is not from a symmetric about 0 distribution". In
practice, a researcher can be interested in testing H0 against the alternative
H+: "X1−µ has a positively skewed distribution" or H−: "X1−µ has a nega-
tively skewed distribution". In these scenarios, Scheme A requires the code’s
variable pval = (1-pnorm((E-W)/sqrt(V))), for H+, or pval = (1-pnorm(-
(E-W)/sqrt(V))), for H−, whereas Scheme B requires pval=(1-pnorm(-(S-
n/2)/sqrt(n*V))) , for H+, or pval=(1-pnorm((S-n/2)/sqrt(n*V))), for H−.

4. Simulation results

We conducted an extensive Monte Carlo study to explore the perfor-
mance of the proposed testing strategies A and B defined in Section 3.4.
This section reports a representative sample of our numerical simulations.

In terms of evaluations of nonparametric decision−making procedures,
we remark that: in the considered framework, (1) there are no most powerful
tests; and (2) it can be assumed that reasonable tests for symmetry based
on large samples provide relatively equivalent and powerful outputs.

Bhattacharya et al. (1982) developed two modifications of the signed
rank Wilcoxon test, e.g., using observations X(0.5(n−1)q+1) −X(0.5(n−1)q+1−i),
X(n−0.5(n−1)q+i) − X(n−0.5(n−1)q), where X(1) < . . . < X(n) are the order
statistics based on X1, . . . , Xn, i = 1, . . . , 0.5(n − 1)q and q ∈ (0, 1) is a
fixed number. The authors demonstrated a limited Monte Carlo study,
concluding that the modifications are outperformed by the famous

√
b1 =∑n

i=1(Xi − X̄n)3
{∑n

i=1(Xi − X̄n)2
}−1.5

-test, in almost all scenarios of the
conducted simulations (see also Cabilio and Masaro, 1996, in this context).
According to Milošević and Obradović (2019), the classical

√
b1-test is more
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Design µ̃3 Description Design µ̃3 Description
D01 0 X1 ∼ N(1, 1) D02 0 X1 = ξ1 − η1,

ξ1 ∼ Exp(1),
η1 ∼ Exp(1)

D03 0 X1 ∼ tdf=3 D04 0 X1 ∼ tdf=5
D05 0 X1 = ξ2−η2, ξ2 ∼

LN(0, 0.4), η2 ∼
LN(0, 0.4)

D06 0 X1 = ξ3−η3, ξ3 ∼
LN(0, 1), η3 ∼
LN(0, 1)

D07 0 X1 = ξ4 − η4,
ξ4 ∼ χ2

df=10, η4 ∼
χ2

df=10

D08 0 X1 ∼ Logis(0, 1)

D11 0.202 X1 = ξ5 − η5,
ξ5 ∼ Exp(1),
η5 ∼ Exp(1.1)

D12 0.383 X1 = ξ6 − η6,
ξ6 ∼ Exp(1),
η6 ∼ Exp(1.2)

D13 -0.546 X1 = ξ7−η7, ξ7 ∼
Exp(1.3), η7 ∼
Exp(1)

D14 0.707 X1 = ξ8 + η8,
ξ8 ∼ N(0, 1),
η8 ∼ Exp(1)

D15 0.479 X1 ∼ χ2
df=35 D16 -0.737 X1 = ξ9−η9, ξ9 ∼

LN(0, 0.5), η9 ∼
LN(0, 0.6)

Table 1: Distributions for the designs used in the Monte Carlo study, where ξi, ηi,
i ∈ [1, ..., 9] are independent and µ̃3 estimates the moment coefficient of skewness.

efficient than many symmetry tests around an unknown center, in various
situations. Thus, we selected the

√
b1-test to be employed in our study.

To this end, we used the modern R package: symmetry and the code:
symmetry_test(x,"B1").

To analyze experimental characteristics of A and B tests, we obtained
numerical results executing various Monte Carlo scenarios. To this end, we
generated 55, 000 independent samples of sizes n ∈ {50, . . . , 1500}, corre-
sponding to the designs depicted in Table 1. Designs D0i, i ∈ [1, ..., 8], cor-
respond to H0, whereas Designs D1i, i ∈ [1, ..., 6], are related to the power
study. The designs serve to represent normal and relatively heavy-tailed
distributions of underlying data.

To obtain Table 2’s results, we derived the Monte Carlo Type I error
rates of the test statistics from Procedures A, B, and the

√
b1-test, under

D0i, i ∈ [1, ..., 8]. The significance level, α, of the tests was supposed to be
fixed at 5%.

Table 2 demonstrates that the developed test A outperforms the con-
sidered tests in the context of controlling the Type I error rates that are
assumed to be less than 5%. In many scenarios, the

√
b1-test cannot be rec-

ommended to be applied, for example, under D02. However, in this case, the√
b1-test is somewhat better than Test B, for relatively large n. The

√
b1-test
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Design Test n = 50 n = 75 n = 100 n = 125 n = 750 n = 1500
D01 A 0.0077 0.0138 0.0205 0.0256 0.0447 0.0495

B 0.0332 0.0476 0.0466 0.0423 0.0483 0.0498√
b1 0.0420 0.0441 0.0469 0.0485 0.0493 0.0516

D02 A 0.0334 0.0404 0.0445 0.0441 0.0456 0.0485
B 0.0711 0.0747 0.0742 0.0732 0.0720 0.0689√
b1 0.0922 0.0801 0.0749 0.0703 0.0507 0.0519

D03 A 0.0268 0.0333 0.0366 0.0388 0.0447 0.0450
B 0.0572 0.0574 0.0560 0.0556 0.0505 0.0525√
b1 0.1298 0.1178 0.1074 0.1003 0.0611 0.0572

D04 A 0.0192 0.0274 0.0329 0.0373 0.0494 0.0501
B 0.0444 0.0491 0.0481 0.0501 0.0513 0.0512√
b1 0.0753 0.0730 0.0711 0.0697 0.0556 0.0549

D05 A 0.0178 0.0261 0.0323 0.0359 0.0485 0.0501
B 0.0511 0.0542 0.0524 0.0534 0.0521 0.0533√
b1 0.0661 0.0643 0.0633 0.0606 0.0519 0.0530

D06 A 0.0427 0.0443 0.0468 0.0475 0.0506 0.0491
B 0.1234 0.1101 0.1048 0.0995 0.0719 0.0658√
b1 0.1855 0.1424 0.1202 0.1070 0.0555 0.0547

D07 A 0.0120 0.0198 0.0256 0.0317 0.0485 0.0473
B 0.0267 0.0295 0.0321 0.0334 0.0456 0.0463√
b1 0.0506 0.0534 0.0535 0.0541 0.0549 0.0497

D08 A 0.0161 0.0251 0.0302 0.0358 0.0481 0.0504
B 0.0390 0.0437 0.0413 0.0446 0.0494 0.0519√
b1 0.0615 0.0612 0.0596 0.0596 0.0518 0.0527

Table 2: The experimental Type I error rates of the tests that are expected to be less
than α = 0.05

directly uses the empirical moments based on sums of observations. This
can lead to a problem of the Type I error rate control via the application of
the central limit theorem when underlying data points are from heavy-tailed
distributions. Table 2 experimentally confirms that values of the tests’ Type
I error rates converge to the desirable 5%, when n = 750, 1500. In this con-
text, however, it seems that the procedure B does not work well in the sce-
narios {(D02, n = 750, 1500) , (D06, n = 750, 1500)}, and the

√
b1-test has is-

sues in the cases {(D02, n = 750, 1500) , (D03, n = 750, 1500), (D04, n = 750),
(D06, n = 750)}. According to the Neyman-Pearson concept in statistical
hypothesis testing, an ability to control the Type I error rates of tests is a
first priority.

Table 3 shows the results of the power evaluations of the algorithms A,
B and the

√
b1-test, when α of the tests for H0 vs. H1 (see Remark 2)

was supposed to be α ≤ 0.05. It seems that the
√

b1-test is superior to
the strategies A and B, in the experimental power levels. However, Table 2

13



Design Test n = 50 n = 75 n = 100 n = 125 n = 150
D11 A 0.0416 0.0530 0.061 (0.064) 0.0658 0.0714

B 0.0830 0.0919 0.101 (0.050) 0.1074 0.1142√
b1 0.1026 0.0946 0.093 (0.054) 0.0901 0.0880

D12 A 0.0538 0.0786 0.104 (0.105) 0.124 0.143
B 0.1089 0.1313 0.161 (0.080) 0.187 0.210√
b1 0.1296 0.1295 0.137 (0.073) 0.142 0.146

D13 A 0.0701 0.116 0.163 (0.167) 0.202 0.242
B 0.1426 0.190 0.238 (0.114) 0.283 0.329√
b1 0.1601 0.175 0.194 (0.090) 0.210 0.230

D14 A 0.0703 0.173 0.297 0.412 0.518
B 0.1002 0.154 0.190 0.236 0.282√
b1 0.2218 0.341 0.454 0.556 0.642

D15 A 0.0496 0.131 0.240 (0.363) 0.348 0.454
B 0.0563 0.084 0.112 (0.133) 0.143 0.175√
b1 0.183 0.292 0.402 (0.368) 0.503 0.588

D16 A 0.053 0.093 0.132 (0.149) 0.167 0.204
B 0.0998 0.125 0.152 (0.091) 0.177 0.204√
b1 0.155 0.178 0.202 (0.064) 0.220 0.2408

Table 3: The Monte Carlo power of the tests, when α is assumed to be 0.05. (According
to Table 2, the actual Type I error rates of the tests B and

√
b1 can be significantly

greater than 5%. Then, the values depicted in (.) exemplify potential corrections to the
corresponding Monte Carlo power levels.)

testifies about concerns regarding this conclusion. To this end, consider,
for example, the scenario D11, n = 100. In this case, in a conjugate man-
ner, we may guess that data points X1, . . . , X100 could follow D02, under
H0. According to the two-sided

√
b1-test, in order to estimate the 95%-

percentiles of the {D02, n = 100}-distribution of the test statistic
∣∣√b1

∣∣, we
drew 25, 000 samples of X1, . . . , X100 satisfying D02. The estimated criti-
cal value was obtained as C0.05 = 1.24. Then the Monte Carlo power, the
frequency of the event

{∣∣√b1
∣∣ > C0.05

}
, under D11, n = 100, had a value

of 0.054 that is smaller than that of Procedure A. Similarly, we can, e.g.,
report in Table 3 the values depicted in (.), showing potential corrections to
the corresponding Monte Carlo power levels. This experiment of the empir-
ical power comparisons confirms that the procedure A is reasonable. (Note
that, theoretically, the null hypothesis, H0, is not simple, we could consider
different H0-symmetric underlying data distributions, evaluating the power
levels, under the designs shown in Table 3.)

Basing on the obtained Monte Carlo results, we conclude that the devel-
oped procedure A is under a good Type I error rate control, and can exhibit
high and stable power characteristics under different designs of alternatives.

Remark 3. Milošević and Obradović (2019) analyzed the W ∗
n -based test
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Figure 1: Data based histograms related to the observed values of the log-transformed
TBARS measurements and the log-transformed HDL-cholesterol measurements.

for specified forms of H0/H1 -underlying data distributions. The authors
showed that, in the context of Bahadur’s efficiency, the W ∗

n -based test can
be superior to the

√
b1-test, when, for example: (1) under H0, X1 is from a

logistic distribution, whereas, under H1, X1 is from a Fernandez-Steel-type
distribution or a contamination-type distribution; (2) under H0, X1 is from
a normal distribution, whereas, under H1, X1 is from a Fernandez-Steel-type
distribution.

5. Real data analysis

Presence of an obstructing blood clot can cause Myocardial infarction
(MI) blocking the blood flow of the heart leading heart muscle injury.

We demonstrate the implementation of the proposed testing scheme A
using a sample from a study that evaluates biomarkers monitored with re-
spect to MI. The study was focused on the residents of Erie and Niagara
counties, 35-79 years of age. The New York State department of Motor
Vehicles drivers’ license rolls was used as the sampling frame for adults be-
tween the age of 35 and 65 years, while the elderly sample (age 65-79) was
randomly chosen from the Health Care Financing Administration database.
The biomarkers called “thiobarbituric acid-reactive substances" (TBARS)
and high-density lipoprotein (HDL) cholesterol are often used as a good
discriminant factor between individuals with and without MI disease (e.g.,
Schisterman et al., 2001). The sample of 250 biomarkers values was collected
on cases without MI disease.

In order to construct models in a future MI research, we performed the
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developed in Section 3.4 tests A, B and the classical
√

b1-test based on log-
transformed TBARS measurements, say LTB, and log-transformed HDL-
cholesterol measurements, say LC, to be assessed for symmetry. Figure 1
depicts the histograms based on the values of LTB and LC. Regarding
LTB, the considered three tests, A, B and

√
b1, significantly reject H0,

demonstrating p-values of 0.0004, 0.0128 and 0.0001, respectively. Regard-
ing LC, the tests, A, B and

√
b1, do not reject H0, showing p-values of

0.581, 0.345 and 0.607, respectively. These results visually agree with the
histograms presented in Figure 1.

Then, we conducted a Bootstrap/Jackknife (e.g., Vexler and Hutson,
2018) type study to examine the performances of the test-statistics, while
analyzing TBARS and HDL-cholesterol data. The computed strategy was
that a sample with size 150 was randomly selected from the data to be tested
for H0 at 5% level of significance. This strategy was repeated 1, 000 times
to calculate the frequencies of the events {A rejects H0}, {B rejects H0} and
{
√

b1 rejects H0}. Regarding LTB, we observed the experimental powers
of the tests, A, B and

√
b1, that are 0.869, 0.631 and 0.801, respectively.

Regarding LC, we obtained the experimental potential Type I error rates
of the tests, A, B and

√
b1, that are 0.076, 0.115 and 0.124, respectively.

Thus, the developed procedure A can be expected to be more sensitive as
compared with the algorithm B and the known method to rejecting the null
hypothesis, H0, regarding the distribution of the log-transformed values of
the considered biomarkers.

6. Concluding Remarks

The present paper has proved that in order to implement the classical
one-sample Wilcoxon signed rank testing algorithm it needs to be adjusted
when a center of symmetry is unknown. We have proposed and examined
the correct schemes, Procedures A and B in Section 3.4, for applying the
Wilcoxon signed rank test and the sign test with an estimated center of sym-
metry. Toward this end relevant theoretical propositions have been derived.
In this framework, the new and simple procedures have been introduced
for estimating the following quantities: the integrated squares of densities,
the probability weighted moments, and special values of density functions.
These provide the proposed decision-making mechanisms to be ready-to-use.
It has been observed using simulations and the real data based example that
Procedure A has the good Type I error rate control while maintaining rela-
tively high power.

Extensive Monte Carlo evaluations were involved in each step in our de-
velopment. This insures correctness of the presented results. For example,
considering Proposition 3, under H0, the quantity E0 {(µ − X1) I(X1 > µ)}
can be estimated by 0.5X̄n −

∑n
i=1 XiI

(
Xi > X̄n

)
/n. However, this esti-

mating scheme was experimentally found to be less effective than that shown
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in Procedure B, in the context of the Type I error rate control validation
based on relatively small samples from heavy-tailed distributions.

Note that we have focused on developing a simple extension of the R
function wilcox.test() and have not had an aim to introduce essentially new
decision-making policies for assessing H0, when µ is unknown. However,
the findings indicate that the testing strategy A has the Type I error rates
under well control and exhibits high and stable power levels.

The algorithms A and B for computing the p-values of the treated tests
can be suitable for analyzing paired observations.

We have presented accurate R programming, which in some sense may
not be perfectly optimal but is functional. The readers can improve upon
our coding methods.

The created methods can be employed to forecast sample sizes needed to
achieve a prespecified power in testing H0. In this context, learning data sets
can be used to estimate the unknown parameters appeared in the statements
of Propositions 2 and 3. In this framework, further studies are needed to
evaluate the proposed approach.

The proposed algorithms can be applied for modifying Wilcoxon signed
rank test type procedures in different statistical software.
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Appendix A. Proof of proposition

Proof of Proposition 1. In the proof below we use the functions f (1)(u) =
df(u)/du, f (2)(u) = df (1)(u)/du, f

(1)
Z (u) = dfZ(u)/du and FZ(u) = Pr (Z12 < u).

It is clear that

E(W ∗
n) =

n∑
i=1

n∑
j=i+1

E
{

I
(
Zij > X̄n

)}
+

n∑
i=1

E
{

I
(
Xi > X̄n

)}
(A.1)

=
(

n

2

)
Pr
(
Z12 > X̄n

)
+ n Pr(X1 > X̄n).

In order to outline the proof of Proposition 1, we consider

Pr(X1 < X̄n) = Pr
{

X1 < µ + (n − 1)−1
n∑

i=2
(Xi − µ)

}

=
∫ ∞

−∞
Pr
(
X1 < µ + (n − 1)−1 u

)
d Pr

{
n∑

i=2
(Xi − µ) < u

}
,

where Taylor’s theorem provides

Pr
{

X1 < µ + (n − 1)−1 u
}

= Pr(X1 < µ)+ f(µ)
n − 1u+ f (1)(µ)

2(n − 1)2 u2+ f (2) (µ∗)
6(n − 1)3 u3

with µ∗ that is between µ and µ+u/(n−1). Note that Pr(X1 < µ) = 1−qX ,∫ ∞

−∞
ud Pr

{
n∑

i=2
(Xi − µ) < u

}
= E

n∑
i=2

(Xi − µ) = 0,

∫ ∞

−∞
u2d Pr

{
n∑

i=2
(Xi − µ) < u

}
= E

{
n∑

i=2
(Xi − µ)

}2

= σ2(n − 1)

as well as∫ ∞

−∞
|u|md Pr

{
n∑

i=2
(Xi − µ) < u

}
= E

∣∣∣∣∣
n∑

i=2
(Xi − µ)

∣∣∣∣∣
m

≤ Cnm/2,

for all m ≥ 3, where C is a constant, e.g. Petrov (1975, p. 60). Thus,
assuming without loss of generality |f (2)(u)| is bounded by auk around µ,
for some a > 0 and k ≥ 0, we can conclude that

Pr(X1 > X̄n) = qX − σ2

2(n − 1)f (1)(µ) + O(n−3/2). (A.2)

The proof scheme demonstrated above and its slight modifications result in
obtaining the further outputs in this section. For example, it can be easily
shown that

Pr(Z12 > X̄n) = qZ − σ2

2(n − 2)f
(1)
Z (µ) + O(n−3/2).
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Then, by virtue of (A.1), we have that

E (W ∗
n) = n(n − 1)

2 qZ + nqX − n(n − 1)σ2

4(n − 2) f
(1)
Z (µ) (A.3)

− nσ2

2(n − 1)f (1)(µ) + o(n).

In order to treat var (W ∗
n), we analyze

E(W ∗
n)2 =

n∑
i=1

n∑
j=i

n∑
k=1

n∑
s=k

Pr
(
Zij > X̄n, Zks > X̄n

)
(A.4)

= n Pr
(
X1 > X̄n

)
+
(

n

4

)(
4
2

)
Pr
(
Z12 > X̄n, Z34 > X̄n

)
+ 2
(

n

1

)(
n − 1

2

)
Pr
(
Z23 > X̄n, X1 > X̄n

)
+ n!

(n − 3)!Pr
(
Z12 > X̄n, Z13 > X̄n

)
+ 4
(

n

2

)
Pr
(
Z12 > X̄n, X1 > X̄n

)
+
(

n

2

)
Pr
(
Z12 > X̄n

)
+ n(n − 1)Pr

(
X1 > X̄n, X2 > X̄n

)
,

where we use that X1, . . . , Xn are independent and identically distributed
and consider the cases with {i = j = k = s}, {i < j ̸= k < s, i ̸= k, i ̸=
s, j ̸= s}, etc. Next, we analyze the components of E(W ∗)2 displayed in
(A.4).

In Equation (A.4), the term

n Pr
(
X1 > X̄n

)
= nqX − σ2n

2(n − 1)f (1)(µ) + O(n−1/2), (A.5)

since (A.2). Evaluate the term

Pr
(
Z12 > X̄n, Z34 > X̄n

)
(A.6)

= Pr
{

min(Z12, Z34) − 1
n

4∑
i=1

(Xi − µ) > µ + 1
n

n∑
i=5

(Xi − µ)
}

= Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) > µ + 1
n

n∑
i=5

(Xi − µ), Z12 ≤ Z34

}

+ Pr
{

Z34 − 1
n

4∑
i=1

(Xi − µ) > µ + 1
n

n∑
i=5

(Xi − µ), Z12 > Z34

}
,
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where

Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) > µ + 1
n

n∑
i=5

(Xi − µ), Z12 ≤ Z34

}
= Pr {Z12 ≤ Z34}

−
∫ ∞

−∞
Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) < µ + u

n
, Z12 ≤ Z34

}
d Pr

{
n∑

i=5
(Xi − µ) ≤ u

}
.

Note that, in a similar manner to obtaining (A.2), we have∫ ∞

−∞
Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) < µ + u

n
, Z12 ≤ Z34

}
d Pr

{
n∑

i=5
(Xi − µ) ≤ u

}
(A.7)

= Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) < µ, Z12 ≤ Z34

}

+σ2(n − 4)
2n2

d2

dy2 Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) < µ + y, Z12 ≤ Z34

}∣∣∣∣∣
y=0

+ O
(
n−3/2

)
,

where

Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) < µ, Z12 ≤ Z34

}
= Pr

{
Z12 < µ + 2

n − 2(Z34 − µ), Z12 ≤ Z34

}
=
∫ ∞

−∞
Pr
{

Z12 < µ + 2u

n − 2 , Z12 ≤ µ + u

}
d Pr(Z34 − µ ≤ u)

=
∫ 0

−∞
Pr {Z12 < µ + u} d Pr(Z34 − µ ≤ u) +

∫ ∞

0
Pr
{

Z12 < µ + 2u

n − 2

}
d Pr(Z34 − µ ≤ u)

=
∫ 1−qZ

0
sds + Pr(Z12 < µ)Pr(Z12 > µ) + 2fZ(µ)

n − 2 E {(Z12 − µ)I(Z12 > µ)} + o(n−1)

= 1
2(1 − qZ)2 + (1 − qZ)qZ + 2fZ(µ)

n − 2 E {(Z12 − µ)I(Z12 > µ)} + o(n−1),

since Z12 and Z34 are identically distributed. We can employ the mean value
theorem to prove that

d2

dy2 Pr
{

Z12 − 1
n

4∑
i=1

(Xi − µ) < µ + y, Z12 ≤ Z34

}∣∣∣∣∣
y=0

= d2

dy2 Pr {Z12 < µ + y, Z12 ≤ Z34}
∣∣∣∣∣
y=0

+ O
(
n−1

)
.

In that fashion, Equation (A.6) can be represented as

Pr
(
Z12 > X̄n, Z34 > X̄n

)
= 1 − 2

[1
2(1 − qZ)2 + (1 − qZ)qZ

+2fZ(µ)
n − 2 E {(Z12 − µ)I(Z12 > µ)}

]
− σ2(n − 4)

2n2
d2

dy2 Pr {min(Z12, Z34) < µ + y}
∣∣∣∣∣
y=0

+o
(
n−1

)
,
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where

d2

dy2 Pr {min(Z12, Z34) < µ + y}
∣∣∣∣∣
y=0

= d2

dy2

[
1 − {Pr (Z12 > µ + y)}2

]∣∣∣∣∣
y=0

=
[
2f

(1)
Z (µ + y) {1 − FZ(µ + y)} − 2f2

Z(µ + y)
]∣∣∣

y=0

= 2f
(1)
Z (µ)qZ − 2f2

Z(µ).

Thus, with respect to (A.4), we have(
n

4

)(
4
2

)
Pr
(
Z12 > X̄n, Z34 > X̄n

)
(A.8)

=
(

n

4

)(
4
2

)[
q2

Z − 4fZ(µ)
n − 2 E {(Z12 − µ)I(Z12 > µ)}

−σ2(n − 4)
2n2

{
f

(1)
Z (µ) − 2f2

Z(µ)
}]

+ o
(
n3
)

.

Now, we consider 2
(n

1
)(n−1

2
)
Pr
(
Z23 > X̄n, X1 > X̄n

)
, where

Pr
(
Z23 > X̄n, X1 > X̄n

)
= Pr

{
X̄n < min (X1, Z23)

}
(A.9)

= Pr
(
Z23 > X̄n, Z23 < X1

)
+ Pr

(
X1 > X̄n, X1 < Z23

)
= 1 − Pr

(
Z23 < X̄n, Z23 < X1

)
− Pr

(
X1 < X̄n, X1 < Z23

)
.

Note, for example, that

Pr
(
Z23 < X̄n, Z23 < X1

)
= Pr

(
Z23 − 1

n

3∑
i=1

(Xi − µ) < µ + 1
n

n∑
i=4

(Xi − µ), Z23 < X1

)

= Pr
(

Z23 − 1
n

3∑
i=1

(Xi − µ) < µ, Z23 < X1

)

+ σ2(n − 3)
2n2

d2

dy2 Pr {Z23 < µ + y, Z23 < X1}
∣∣∣∣∣
y=0

+ o
(
n−1

)
,
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where

Pr
(

Z23 − 1
n

3∑
i=1

(Xi − µ) < µ, Z23 < X1

)

=
∫ ∞

−∞
Pr
(

Z23 < µ + u

n − 2 , Z23 < µ + u

)
d Pr(X1 − µ ≤ u)

=
∫ 0

−∞
Pr(Z23 < µ + u)dPr(X1 − µ ≤ u)

+
∫ ∞

0
Pr
(

Z23 < µ + u

n − 2

)
dPr(X1 − µ ≤ u)

= Pr(Z23 < X1 < µ) + (1 − qZ)qX + fZ(µ)
n − 2 E {(X1 − µ)I(X1 > µ)} + o

(
n−1

)
.

Applying this principle to evaluate Pr
(
X1 < X̄n, X1 < Z23

)
in (A.9), we

represent

Pr
(
X1 < X̄n, X1 < Z23

)
= Pr(X1 < Z23 < µ) + (1 − qX)qZ + 2f(µ)

n − 1 E {(Z23 − µ)I(Z23 > µ)}

+ σ2(n − 3)
2n2

d2

dy2 Pr {X1 < µ + y, X1 < Z23}
∣∣∣∣∣
y=0

+ o
(
n−1

)
.

Thus, in the asymptotic approximation of (A.9) we have the terms

σ2(n − 3)
2n2

d2

dy2 Pr {Z23 < µ + y, Z23 < X1}
∣∣∣∣∣
y=0

+ σ2(n − 3)
2n2

d2

dy2 Pr {X1 < µ + y, X1 < Z23}
∣∣∣∣∣
y=0

= σ2(n − 3)
2n2

d2

dy2 Pr {min(Z23, X1) < µ + y}
∣∣∣∣∣
y=0

and Pr(Z23 < X1 < µ) + Pr(X1 < Z23 < µ). Since

d2

dy2 Pr {min(Z23, X1) < µ + y}
∣∣∣∣∣
y=0

= d2

dy2 F (µ + y)FZ(µ + y)
∣∣∣∣∣
y=0

= f (1)(µ)qZ − 2f(µ)fZ(µ) + f
(1)
Z (µ)qX
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and

Pr(Z23 < X1 < µ) + Pr(X1 < Z23 < µ) = Pr(Z23 < X1, X1 < µ)
+ Pr(X1 < Z23, Z23 < µ)

= Pr {max(Z23, X1) < µ} = Pr(Z23 < µ, X1 < µ) = Pr(Z23 < µ)Pr(X1 < µ)
= (1 − qZ)(1 − qX),

we obtain in (A.4) that

2
(

n

1

)(
n − 1

2

)
Pr
(
Z23 > X̄n, X1 > X̄n

)
(A.10)

= n(n − 1)(n − 2)
[
qXqZ − fZ(µ)

n − 2 E {(X1 − µ)I(X1 > µ)}

− 2f(µ)
n − 1 E {(Z23 − µ)I(Z23 > µ)}

− σ2(n − 3)
2n2

{
qZf (1)(µ) − 2f(µ)fZ(µ) + qXf

(1)
Z (µ)

}]
+ o

(
n2
)

= n(n − 1)(n − 2)qXqZ + o(n3).

Now, in the context of (A.4), the mechanism applied in the evaluations
shown above yields that

n!
(n − 3)!Pr

(
Z12 > X̄n, Z13 > X̄n

)
= n(n − 1)(n − 2) (1 − 2qZ − 2L1) + o

(
n3
)

,

4
(

n

2

)
Pr
(
Z12 > X̄n, X1 > X̄n

)
+
(

n

2

)
Pr
(
Z12 > X̄n

)
+ n(n − 1)Pr

(
X1 > X̄n, X2 > X̄n

)
= 2n(n − 1) (1 − qX − L2) + n(n − 1)

2 qZ + n(n − 1)q2
X + o(n3),

where

L1 = 2
∫ ∞

−∞

[
F (µ + u)F (µ − u) − {1 − F (µ − u)}2

]
dF (µ + u),

L2 =
∫ ∞

0
F (µ − u)dF (µ + u).

This and results (A.5), (A.8), (A.10) imply that expectation (A.4) can be
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approximated as

E(W ∗
n)2 = n(n − 1)(n − 2)(n − 3)

4 q2
Z

+ n(n − 1)(n − 2)((1 − qZ) − (1 − qX)qZ − 2L1)

+ n(n − 1)
{

2 (1 − qX − L2) + 1
2qZ + q2

X

}
+ nqX

− n(n − 1)(n − 3)fZ(µ)E {(Z12 − µ)I(Z12 > µ)}

+ σ2(n − 1)(n − 2)(n − 3)(n − 4)
8n

{
2f2

Z(µ) − 2qZf
(1)
Z (µ)

}
+ o

(
n3
)

.

Since var(W ∗
n) = E(W ∗

n)2 − (E(W ∗
n))2, where E(W ∗

n) is approximated in
(A.3), a simple algebra completes the proof of Proposition 1.

Proof of Proposition 2. The proof can be obtained by using the method-
ology of Randles (1982) and Proposition 1.
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