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Abstract

In genomic study, log transformation is a common prepossessing step to adjust for
skewness in data. This standard approach often assumes that log-transformed data is
normally distributed, and two sample t-test (or its modifications) is used for detecting
differences between two experimental conditions. However, recently it was shown that
two sample t-test can lead to exaggerated false positives, and the
Wilcoxon-Mann-Whitney (WMW) test was proposed as an alternative for studies with
larger sample sizes. In addition, studies have demonstrated that the specific distribution
used in modeling genomic data has profound impact in the interpretation and validity of
results. The aim of this paper is three-fold: 1) to present Exp-gamma distribution 1 as
a proper biological and statistical model for the analysis of log-transformed protein
abundance data from single-cell experiments; 2) to demonstrate the inappropriateness of
two sample t-test and the WMW test in analyzing log-transformed protein abundance
data; 3) to propose and evaluate statistical inference methods for hypothesis testing and
confidence interval estimation for comparing two independent samples under
Exp-gamma distributions. The proposed methods are applied to analyze protein
abundance data from a single-cell dataset.

1 Introduction 1

Recent investigations of physical models [1–4] of individual cells demonstrated that the 2

protein copy number (or abundance) distribution can be approximated as gamma 3

distribution. These studies claimed that the shape parameter of gamma distribution can 4

be interpreted as the number of mRNA produced per cell cycle, and the scale parameter 5

as the protein molecules produced per mRNA within individual cells. Although studies 6

at single-cell level were costly and scarce a decade ago, recent technology advances make 7

large scale of protein abundance data at single-cell level proliferate [5, 6]. 8

In practice, up-regulated and down-regulated genes between samples are assessed 9

using fold change which represents a proportional rather than additive changes from 10

reference (e.g. healthy) to alternative (e.g. tumor) state. Hence log-transformed 11

abundance level is more biologically relevant, and expression (or concentration) of genes 12

is usually pre-processed by log-transformation before statistical modeling. Additionally, 13

log-transformation is used to adjust for skewness and for variance stabilization [7–11]. 14

1exponential-gamma distribution stands for log-transformed gamma distribution
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Such transformation is widely used as a preprocessing step for many types of molecular 15

markers. Therefore, exponential-gamma distribution (Exp-gamma), derived from the 16

gamma distribution by applying a logarithmic transformation, is an ideal candidate for 17

modeling log-transformed protein abundance data. 18

However, researchers often resort to two sample t-test or the 19

Wilcoxon-Mann-Whitney (WMW) test in differential analysis of log-transformed protein 20

abundance and other molecular data [12–14] for detecting difference between two 21

experimental conditions, often with some pre- and post-model adjustment to reduce 22

false positive rate [15, 16]. Fay and Proschan [17] argued that two sample t-test decision 23

rules are asymptotically valid under quite general conditions even if the normality 24

assumption is rejected. Recently, Li et al. [14] pointed out that two sample t-test often 25

results in exaggerated false positive rate, and recommended using the WMW test for 26

comparing two sets of expression levels measured under two conditions for a gene in 27

population-level RNA-seq studies with large sample sizes. Hao et al. [5] analyzed the 28

differential abundance of cell types across experimental conditions using the WMW test 29

after log-normalization of the protein data. However, some researchers pointed 30

out [17,18] that although the WMW test does not require parametric assumptions, it 31

assumes that two distributions are equal under null hypothesis; hence it could result in 32

inflated type I errors in testing equality of means. Recently, Torrente et al. [19] studied 33

the shape of gene expression and discovered that gamma distribution was the 34

predominant non-normal category of genes in both microarray and RNA-seq datasets. 35

Although there exist some research on the appropriateness of two sample t-test and 36

the WMW test in the differential analysis of log-transformed protein abundance 37

data [5, 12–14], there does not exist such an investigation under Exp-gamma 38

distribution. Furthermore, accurate statistical inference methods for comparing two 39

Exp-gamma means is of particular interest since the identification of difference of log 40

transformed protein abundance data under two different experiment conditions is a 41

fundamental research question in genomics study. Despite of the existence of rich 42

statistical research on gamma means [20–29], to our knowledge, there does not exist 43

literature on inference of Exp-gamma means. Therefore, the aim of this paper is 44

three-fold: 1) to present Exp-gamma distribution as a proper biological and statistical 45

model for the analysis of log-transformed protein abundance data from single cell 46

experiments; 2) to demonstrate the inappropriateness of using two sample t-test and the 47

WMW test in analyzing log-transformed protein abundance data; 3) to propose and 48

evaluate statistical inference methods for hypothesis testing and confidence interval 49

estimation for comparing two independent samples under Exp-gamma distributions. 50

This paper is organized as follows. In Section 2, we provide some preliminary results 51

on features of Exp-gamma distribution, along with its characteristics. In Section 3, the 52

motivation of this research is addressed by a more detailed description of the molecular 53

process of protein production and its critical role in human traits and disease, as given 54

in Section 3.1, followed by an investigation on the inappropriateness of two sample t-test 55

and the WMW test for testing the equality of two Exp-gamma means in Section 3.2. In 56

Section 4, methods for hypothesis testing for equality of two independent Exp-gamma 57

means and confidence interval estimation for mean difference are proposed. In Section 5, 58

we present the simulation studies on the type I error control and power of the proposed 59

tests, as well as the coverage probability of proposed confidence intervals. In Section 6, 60

a subset of Seurat data that was used in scRNA-seq studies is analyzed using the 61

proposed methods. Finally, concluding remarks are given in Section 7. 62

2 The setting 63

Let Y1 and Y2 denote two independent random variables from log-transformed gene 64
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expression/protein abundance, where Yi ∼ Exp-gamma(αi, βi), i.e. 65

Yi ∼ fi(y;αi, βi) =
βαi
i

Γ(αi)
eαiye−βie

y

, i = 1, 2,

where y ∈ (−∞,∞), and αi, βi > 0. Note that Xi = eYi following a gamma distribution, 66

i.e. Xi ∼ gamma(αi, βi) where αi and βi stand for the shape parameter and rate 67

parameter, respectively. Fig 1 contains two graphs of the probability density functions 68

of Yi and Xi at (αi, βi) = (1, 1) and (αi, βi) = (3, 1), respectively. The Exp-gamma 69

distribution is skewed to the left (negatively skewed), with its both tails extending 70

indefinitely. 71

Let δi and σ
2
i denote the population mean and variance for Yi, respectively. It can 72

be proved that 73

δi = ψ(αi)− lnβi, (1)

σ2
i = ψ(1)(αi), (2)

for i = 1, 2, where ψ() is the digamma function and ψ(1)() is the trigamma function. 74

The details of the proof are presented in Appendix 1. 75

Skewness and excess kurtosis are the other two measures which describe the 76

distributional properties of a probability distribution. Skewness measures the 77

asymmetry of the probability distribution, and excess kurtosis measures how much the 78

distribution deviates from a normal distribution in terms of tails. Both the skewness 79

(skew) and the excess kurtosis (ex-kurt) of the Exp-gamma distribution only depend on 80

its shape parameter αi, 81

skewi = ψ(2)(αi)/[ψ
(1)(αi)]

3/2, (3)

ex-kurti = ψ(3)(αi)/[ψ
(1)(αi)]

2 − 3,

for i = 1, 2, where ψ(k−1)() is kth derivative of the log gamma function. The detailed 82

proof is shown in Appendix 1. 83

Fig 2 shows the the skewness and excess kurtosis for Exp-gamma distribution as the 84

shape parameter (α) ranges from 0.1 to 50. The negative skewness confirms the 85

appearance of the Exp-gamma distribution is left skewed. The excess kurtosis of 86

Exp-gamma distribution can be positive and negative, whereas the positive value means 87

that the Exp-gamma distribution is thin-tailed and has fewer outliers, and the negative 88

value means that the Exp-gamma distribution is fat-tailed and has many outliers. 89

When α = 0.7689, the Exp-gamma distribution has the same kurtosis as the normal 90

distribution. As α tends to infinity, the value of skew converges to 0, and the value of 91

ex-kurt converges to −3. 92

We are interested in testing the hypothesis H0 : δ1 = δ2, vs. H1 : δ1 ̸= δ2, as well as 93

constructing confidence interval for mean difference δ1 − δ2. The mean difference of two 94

independent Exp-gamma distributions is given by 95

η = δ1 − δ2 = ψ(α1)− lnβ1 − (ψ(α2)− lnβ2).

Let α̂i and β̂i stand for the maximum likelihood estimates for αi and βi, respectively. 96

The maximum likelihood estimator (MLE) of δi is 97

δ̂i = ψ(α̂i)− ln(β̂i).

Then 98

η̂ = δ̂1 − δ̂2 = ψ(α̂1)− ln(β̂1)− (ψ(α̂2)− ln(β̂2)).

The variance of η̂ is 99

Var(η̂) = Var(δ̂1 − δ̂2) =
ψ(1)(α̂1)

n1
+
ψ(1)(α̂2)

n2
. (4)
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3 Motivation 100

In this section, we provide detailed arguments about the compelling importance of 101

exponential-gamma (Exp-gamma) distribution in analyzing log-transformed protein 102

abundance data from single-cell experiments, as well as the paramount significance of 103

developing statistical inference procedures under Exp-gamma distribution. 104

3.1 Justification of using Exp-gamma distribution for cellular 105

protein abundance measurements 106

The central dogma of molecular biology is the fundamental theory developed by Francis 107

Crick in 1958 that explains how genetic information flows within a biological system. 108

The core idea can be simply stated as: “DNA makes (messenger) RNA, and RNA 109

makes protein”. The abundance of cellular protein is intimately linked to all biological 110

functions in living cells. Since then, this theory has withstood the test of time and 111

intensive investigations, with only minor exceptions and enrichment. The expression 112

levels of messenger RNAs (mRNAs) and proteins are essential measurements of an 113

organism’s genetic makeups (genotypes), and are often directly related to many 114

observable characteristics or traits (phenotypes), including morphology, development, 115

biochemical, and physiological properties. Common phenotypes in human include height 116

and blood type, as well as disease related characteristics, e.g. cancer subtypes. 117

Understanding the differences in genotypes (e.g. protein abundance) and their 118

relationships with phenotypes (e.g. cancer progressions) is the focus of molecular 119

biology. 120

Since its introduction in 2008 [30], cost effective and rapid mRNA quantification of 121

whole genome (transcriptome) has become a standard tool in the life sciences research 122

community. Initially developed for bulk samples, this method was evolved to quantify 123

mRNA levels in single cells, and revolutionized the field of cancer research. Numerous 124

analysis methods and pipelines have been developed for mRNA quantification, based on 125

the organism under study, platform characteristics, and researcher’s goals [31]. Due to 126

its wide-spread usage, the mRNA quantification is often used as a synonym of gene 127

expression in many studies. However, in fact, the protein abundance data is a more 128

accurate measurement for activities of genes. It is well established that mRNA 129

transcript level only partially correlates with protein abundances [32], and 130

transcriptomics alone is often incapable of distinguishing between categories of cells that 131

are molecularly similar, but functionally distinct. Due to the high cost and experimental 132

complexities, studies that access protein abundance remain scarce, especially at 133

single-cell level because of the low abundance of proteins in cells. Only in the past a few 134

years, genome-wide analysis of protein abundance at single-cell level became 135

practical [5]. Unfortunately, this belated development also means lack of investigation of 136

protein specific statistical analysis method. Most of the methods that were adopted 137

from RNA-seq analysis [7] overlooked sample distribution, except for some prepossessing 138

and normalization steps to compensate obvious skewness of the protein data. It 139

becomes clear that single-cell protein abundance specific statistical method for accurate 140

assessment of such data is in great need. Consistent with the two-stage model of gene 141

expression described in the central dogma of molecular biology, the intriguing physical 142

models [1–4] unveiled intrinsic association between gamma distribution parameters and 143

biological process of protein synthesis. Based on these observations, we propose to use 144

Exp-gamma distribution for modeling single-cell protein levels in molecular biology and 145

cancer research, since log-transformed protein abundances are often biologically more 146

relevant to their cellular functions. 147

It is worth mentioning that many molecular biology data can be modeled by gamma 148

distribution. For example, microRNA sequencing data tends to align closely with a 149
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gamma distribution due to the stochastic nature of exponential PCR 150

amplification [19,33,34]. The absolute abundance level of metabolic [35] and 151

microbiome [36] data exhibit characteristics aligned with gamma distributions. 152

Furthermore, log-transformation is the standard preprocessing step in statistical 153

analysis of these data. Hence, Exp-gamma distribution is a good candidate for modeling 154

log-transformed cellular protein abundance measurements. 155

3.2 Two sample t-test and the Wilcoxon-Mann-Whitney 156

(WMW) test could be misleading 157

The two sample t-test and the WMW test are widely used in differential analysis for 158

log-transformed protein abundance data in proteomics [5, 7, 14,37–39]. However, the 159

appropriateness of using these two tests in differential analysis under Exp-gamma has 160

not been investigated. Hence, in this section, we aim to use a simulation study to 161

demonstrate their limitations in differential analysis. 162

Assume two samples of protein abundance obtained under different experimental 163

conditions are from gamma distributions, i.e. X1 ∼ gamma(α1, β1), and 164

X2 ∼ gamma(α2, β2). The differential analysis is based on log-transformed data from Y1 165

and Y2, where Y1 = log(X1) ∼ Exp-gamma(α1, β1) and 166

Y2 = log(X2) ∼ Exp-gamma(α2, β2). We are interested in testing the equality of two 167

Exp-gamma means. 168

We carried out simulations to evaluate the type I error control of two sample t-test 169

and the WMW test under H0 : δ1 − δ2 = 0. Four parameter settings for (α1, β1) vs. 170

(α2, β2) are considered: A) (0.2, 0.005) vs. (5, 4.509); B) (0.5, 0.14) vs. (10, 9.504); C) 171

(1, 0.561) vs. (5, 4.509); and D)(5, 0.048) vs. (5, 0.048). In settings A, B, and C, the two 172

Exp-gamma distributions differ, while in setting D, they are identical. Fig 3 presents 173

the density plots under these four settings. It can be seen that these settings vary 174

considerably despite the fact that they are all under H0 : δ1 − δ2 = 0. Under the null 175

hypothesis of equal population means, the probability that Y1 is greater than Y2 (i.e. 176

P (Y1 > Y2)), a measure for the difference between two populations, is 0.621, 0.593, 177

0.556, and 0.5, for settings A, B, C, and D, respectively, indicating setting A has the 178

largest difference between two populations and setting D has the smallest difference. 179

Note that generally speaking, P (Y1 > Y2) = 0.5 does not necessarily imply two 180

populations are identical. In this simulation study, we deliberately design setting D to 181

have two identical populations for the purpose of checking the applicability of two 182

sample t-test and the WMW test under two identical Exp-gamma distributions. For 183

each setting, we considered sample sizes from small (10) to large (75). For a given set of 184

sample sizes and parameter configuration, 2000 observed datasets are generated. The 185

simulated type I errors by two sample t-test and the WMW test are reported in Fig 4 186

and Fig 5, respectively. 187

As shown in Fig 4, the type I errors of two sample t-test (or Welch’s test for unequal 188

variances) converge to nominal level as sample sizes increase, as guaranteed by the 189

central limit theorem. In addition, when two Exp-gamma distributions are identical 190

(setting D), the two sample t-test maintains controlled type I errors even when sample 191

sizes are small. Note that the type I errors for setting D lie completely between two 192

dashed lines in Fig 4, which indicate boundaries for satisfactory coverage given 2000 193

simulation runs. However, if two Exp-gamma distributions are different (i.e. settings A, 194

B and C), the type I errors for testing the equality of means can be as high as 0.1, 195

particularly when sample sizes are small (e.g. less than (50, 50) for settings A and B, 196

and less than (30, 30) for setting C). Thus, two sample t-test is appropriate for testing 197

the equality of two means of log-transformed protein abundance data when sample sizes 198

are larger than (50, 50). When dealing with small to medium sample sizes, we should 199
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exercise caution with two sample t-test, especially when two underlying distributions 200

are very different. 201

When assumption of normality is in doubt, it is a common practice that the WMW 202

test is used as an alternative as it is a non-parametric test. However, while 203

non-parametric tests such as the WMW test do not require normality, they test the null 204

hypothesis that two populations are identical. Hence, when two populations have the 205

same mean but not identical, the WMW test does not guarantee to preserve the 206

significance level. More details can be found in the paper by Pratt [18] which 207

thoroughly investigated the effect of differences between two populations on the level of 208

the WMW test for normal, double exponential, and rectangular distributions. In this 209

simulation study, we investigate the effect of the difference between two Exp-gamma 210

distributions on the significance level of the WMW test under null hypothesis of 211

equality of two Exp-gamma means. In Fig 5, we observe inflated type I errors for 212

settings A, B, and C in the WMW test, and the magnitude of inflation increases as 213

sample sizes grow. Furthermore, given sample sizes, as the disparity measured by 214

P (Y1 > Y2) grows, the inflation of type I error becomes worse; and setting A has the 215

worst type I error control among all settings. It is also notable that the type I errors are 216

well controlled for setting D in which two distributions are identical. Hence, for testing 217

equality of two Exp-gamma means, the WMW test can control type I error only when 218

two distributions are exactly the same, and the type I error can be severely out of 219

control when two distributions are not the same. 220

In summary, both two sample t-test and the WMW test have limitations in 221

hypothesis testing of equality of two independent Exp-gamma means. While two sample 222

t-test is not the ideal test to use when sample sizes are below medium, the limitation for 223

the WMW test is more serious as it requires the two distributions to be exactly the 224

same under the null hypothesis. In practice, small to medium sizes in genomics studies 225

are common, and scenarios with identical populations under null hypothesis could be 226

rare. Therefore, accurate procedures for statistical inference for mean difference of two 227

independent Exp-gamma distributions are desirable. 228

4 Inferences on the mean difference of two 229

independent Exp-gamma distributions 230

Let Y1 and Y2 be two independent Exp-gamma random variables, i.e. 231

Y1 ∼ Exp-gamma(α1, β1) and Y2 ∼ Exp-gamma(α2, β2). Note that Yi = lnXi where 232

Xi ∼ gamma(αi, βi), i = 1, 2, and X1 and X2 are independent. Then the population 233

means for Y1 and Y2 are given as follows: 234

δ1 = ψ(α1)− lnβ1 and δ2 = ψ(α2)− lnβ2.

Thus, the research interest is to perform hypothesis testing with satisfactory type I error 235

control under H0 : δ1 = δ2 vs. H1 : δ1 ̸= δ2, and estimate the confidence interval for the 236

mean difference η = δ1 − δ2 with satisfactory coverage probability. 237

4.1 The method based on generalized inference 238

The concepts of generalized variables and generalized pivots were introduced by Tsui 239

and Weerahandi [40] and Weerahandi [41]. More details can be found in the book of 240

Werrahandi [42]. In Appendix 2, a brief summary of the core concepts is presented. The 241

concepts of generalized pivotal quantity and generalized confidence interval have been 242

successfully applied to a variety of practical problems when standard exact solutions do 243
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not exist, and it has been shown that generalized inference methods generally have good 244

performance, even when sample sizes are small; see e.g. [43–45]. 245

Although there does not exist exact generalized pivots for gamma parameters, 246

approximates generalized pivots have been proposed [22–26]. These approximate pivots 247

have been utilized to make inference for gamma distributions, including single gamma 248

means and difference between two gamma means under different scenarios [27–29]. 249

Utilizing the existing approximate generalized pivots for gamma parameters, we will 250

develop the generalized inference methods for hypothesis testing and confidence interval 251

estimation for mean difference of two independent Exp-gamma distributions. 252

4.1.1 Generalized pivots for population parameters: A review 253

Assume X ∼ gamma(α, β). In the following, we will first briefly review the existing 254

approximate generalized pivots for gamma parameters α and β. 255

Krishnamoorthy and Wang’s method: [25,26] By applying the Wilson-Hilferty normal 256

approximation, i.e. W = X1/3 ∼ N(µ, σ2). Generalized pivotal quantities for normal 257

mean and variance, Rµ and Rσ2 can be obtained for transformed data. Let w̄ and s2i be 258

the observed sample mean and sample variance based on the transformed data W . The 259

generalized pivotal quantities for α and β can be further expressed as: 260

Rα =
1

9

{(
1 + 0.5R2

µ/Rσ2

)
+
[(
1 + 0.5R2

µ/Rσ2

)2 − 1
] 1

2

}
,

Rβ =
1

27(Rα)
1
2 (Rσ2)

3
2

,
(5)

where Rµ = w̄ − Z√
U1

√
(n−1)s2

n , and Rσ2 = (n−1)s2

U2
∼ (n−1)s2

χ2
n−1

, with Z ∼ N(0, 1), 261

U1 ∼ χ2
n−1, U2 ∼ χ2

n−1, and Z, U1, and U2 are independent. 262

Chen and Ye’s method: [22,23] It is known that 2nα log(X̄/X̃) ∼ cχ2
v approximately, 263

where v = 2E2(V1)/Var(V1) and c = E(V1/v). The detailed formulas for E(V1) and 264

Var(V1) can be found in Chen and Ye [22]. Using this result, an approximate 265

generalized pivotal quantity for α can be written as 266

Rα = V1/[2n log(x̄/x̃))],

where V1 ∼ ĉχ2
v̂, x̄ and x̃ are observed values of X̄ and X̃. Furthermore, utilizing a 267

well-known result regarding gamma distribution, i.e. 2nβX̄ ∼ χ2
2nα, the generalized 268

pivot quantity for β can be written as 269

Rβ = V2/(2nx̄), (6)

where V2 ∼ χ2
2nRα

. 270

Wang and Wu’s method: [24] Let T = log(X̃/X̄). Note that U = F (.) ∼ U(0, 1), 271

where F (.) is the c.d.f of T . On the basis of Cornish-Fisher expansion, the Uth 272

percentile of T can be approximated by κ1(α) + [κ2(α)]
1/2Q(α,U), where κj(α) is the 273

jth cumulant of T and Q(α,U) is a function of κj(α)’s. The detailed formulas can be 274

found in Wang and Wu [24]. Let t denote the observed value of T . An approximate 275

generalized pivotal quantity for α, i.e. Rα, can be obtained by solving 276

t = κ1(α) + [κ2(α)]
1/2Q(α,U). Similar to Chen and Ye’s method, the approximate 277

generalized pivotal quantity for rate parameter, Rβ , can be obtained by (6). This 278
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method improves Chen and Ye’s method and can work well even when the shape 279

parameter α is small. 280

4.1.2 The generalized inference methods for hypothesis testing and 281

confidence interval estimation for two independent Exp-gamma 282

means 283

For the ith (i = 1, 2) sample, the generalized pivotal quantities Rαi
and Rβi

can be 284

obtained by one of the three approximate generalized inference methods for gamma 285

parameters, i.e. Krishnamoorthy and Wang’s method [25,26], Chen and Ye’s 286

method [22,23], and Wang and Wu’s method [24], as reviewed in Section 4.1.1. 287

Replacing αi with Rαi and βi with Rβi in (2), the generalized pivotal quantity for δi 288

can be expressed as 289

Rδi = ψ(Rαi
)− lnRβi

, i = 1, 2. (7)

The generalized pivotal quantity we propose for the mean difference (η) of two 290

independent Exp-gamma distributions can be expressed as 291

Rη = Rδ1 −Rδ2 = ψ(Rα1)− lnRβ1 − (ψ(Rα2)− lnRβ2). (8)

It is easy to verify that Rη is a bona fide generalized pivotal quantity for η 292

approximately. For a given data set Y11, Y12, . . . , Y1n1 and Y21, Y22, . . . , Y2n2 , the 293

following holds: 1) the distribution of Rη is independent of any unknown parameters; 2) 294

the value of Rη is η approximately when the statistics used in the definitions of Rαi
and 295

Rβi (i = 1, 2) are equal their observed value (e.g. in X̄i = x̄i and X̃i = x̃i in Chen and 296

Ye’s method ). 297

For testing the hypothesis of equality of two Exp-gamma means, 298

H0 : δ1 − δ2 = η vs. H1 : δ1 − δ2 ̸= η, (9)

where η = 0. The generalized test variable is defined as 299

Tη = Rη − η (10)

where Rη is the generalized pivotal quantity defined in (8). Note that Tη satisfies the 300

three conditions to be a bona fide generalized test variables: 1) the distribution of Tη is 301

free of nuisance parameters; (2) tη, the observed value of Tη, is 0, and hence is free of 302

any unknown parameters; and (3) Tη is stochastically decreasing in η. 303

The generalized p-value for testing the hypothesis of equality of two Exp-gamma 304

means is given by 305

2×min{P (Rη ≤ 0), P (Rη ≥ 0)}. (11)

4.1.3 Computing algorithm 306

Consider a given data set Yij ’s (i = 1, 2, j = 1, 2, . . . , ni) where the ith sample 307

Yi ∼ Exp-gamma(αi, βi). The generalized p-value for testing equality of two 308

Exp-gamma means, and estimated confidence interval of the mean difference of two 309

Exp-gamma distributions, can be computed by the following steps: 310

1. Use one of the three methods presented above, generate Rαi
and Rβi

for i = 1, 2, 311

then compute generalized pivot Rδi for δi following (7) for i = 1, 2. 312

2. Compute generalized pivot Rη = Rδ1 −Rδ2 for η following (8). 313
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3. Repeat steps 1-2 a total B (B = 2000) times and obtain array of Rbη’s for 314

b = 1, 2, . . . , B. 315

Let Rη:p denote the 100p percentile of the B Rη’s generated in the preceding steps. 316

Then (Rη:p/2, Rη:1−p/2) is a 100(1− p)% confidence interval for the mean difference of 317

two independent Exp-gamma distributions. 318

Under the H0 : δ1 = δ2, the generalized p-value can be obtained by (11), i.e. 319

p-value = 2×min{
∑B
i=1 I{Rb

η≤0}

B
,

∑B
i=1 I{Rb

η≥0}

B
}. (12)

The H0 can be rejected if the p-value is less than a given significant level a. 320

We refer the three methods based on the generalized pivotal quantity of Exp-gamma 321

mean difference as GK , GC , and GW , corresponding to the methods used for gamma 322

parameters, i.e. Krishnamoorthy and Wang’s method, [25,26], Chen and Ye’s 323

method [22,23], and Wang and Wu’s method [24], respectively. 324

4.2 The parametric bootstrap method 325

Parametric bootstrap (PB) method has been widely used in estimating confidence 326

intervals when the parametric model is justified, e.g. [21, 46]. In this section, we propose 327

a PB method for hypothesis testing and confidence interval estimation for mean 328

different of two independent Exp-gamma distributions. 329

Let Ȳi denotes the mean based on a sample of size ni from a Exp-gamma(αi, βi) 330

distribution, i = 1, 2. Let α̂i and β̂i denote the MLEs of αi and βi, respectively. 331

Similarly, let Ȳ ∗
i denotes the mean based on a bootstrap sample of size ni from the 332

Exp-gamma(α̂i, β̂i). Let (α̂
∗
i , β̂

∗
i ) denote the MLEs based on a boostrap sample, i = 1, 2. 333

The PB pivot to estimate the difference between two means δ1 = ψ(α1)− ln(β1) and 334

δ2 = ψ(α2)− ln(β2) is given by 335

Qη =
(Ȳ ∗

1 − Ȳ ∗
2 )− (Ȳ1 − Ȳ2)√

ψ(1)(α̂∗
1)

n1
+

ψ(1)(α̂∗
2)

n2

. (13)

The following steps can be used to obtain the p-values for hypothesis testing in (9), 336

decision rules, and confidence interval for η based on PB method: 337

1. For a given sample of size ni, calculate the MLEs α̂i and β̂i, i = 1, 2. 338

2. Generate bootstrap samples of size ni from gamma(α̂i, β̂i). Then calculate the 339

Ȳ ∗
i , and MLEs (α̂∗

i , β̂
∗
i ) based on the bootstrap samples for i = 1, 2. 340

3. Calculate Qη as in (13). 341

4. Repeat steps 2-3 a total B (B = 2000) times and obtain array of Qbη’s for 342

b = 1, 2, . . . , B. 343

5. The p-value can be obtained by 344

p-value = 2×min{
∑B
i=1 I{Qb

η≤0}

B
,

∑B
i=1 I{Qb

η≥0}

B
}, Ha : δ1 ̸= δ2.

6. The H0 can be rejected if the p-values is less than a given significant level a. 345

7. The 100(1− p)% PB confidence interval can be obtained as 346

{(Ȳ1−Ȳ2)−Qη;1−p/2

√
ψ(1)(α̂1)

n1
+
ψ(1)(α̂2)

n2
, (Ȳ1−Ȳ2)−Qη;p/2

√
ψ(1)(α̂1)

n1
+
ψ(1)(α̂2)

n2
},

where Qη;p denotes the 100p percentile of Qη. 347
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5 Simulation studies 348

In previous section, we presented some methods for hypothesis testing and confidence 349

interval estimation for mean difference of two independent Exp-gamma distributions: 350

three methods based on the generalized pivots (i.e.GC , GW , and GK), and a 351

parametric bootstrap method (i.e. PB). Simulation studies are carried out to evaluate 352

the performance of proposed methods for hypothesis testing and confidence interval 353

estimation. 354

5.1 Hypothesis testing 355

Sample sizes are set from small (10) to large (75), including balanced and unbalanced 356

settings. The parameter settings for type I error control include scenarios of 357

equal/unequal shape parameters, with the common mean of two samples ranging from 358

−1.369 to 4.634. The parameter settings for power study include scenarios with 359

equal/unequal shape parameters with mean difference ranging from 0.5 to 1.386. For 360

each parameter setting, 2000 random samples are generated with given sample sizes. 361

For the type I error and power based on generalized inference methods (GC , GW , and 362

GK), 2000 values of generalized pivots are obtained for each random sample. For the 363

type I error and power obtained by PB method, 2000 bootstrap samples are generated 364

for each random sample. 365

Table 1 presents the type I error rate estimates of hypothesis testing based on 366

proposed methods (GC , GW , GK , and PB), in comparison with t-test and the WMW 367

test, for testing the equality of means of two Exp-gamma distributions. Note that for 368

the first three scenarios, the two Exp-gamma distributions are identical. The rest 369

scenarios are ranked using P (Y1 > Y2) in ascending order, indicating larger disparity 370

between two Exp-gamma distribution under null hypothesis. 371

Out of the three proposed methods based on the generalized pivots, GC and GW 372

have excellent type I error control regardless of shapes, rates, sample sizes, and the 373

value of P (Y1 > Y2), while GK can have inflated type I errors when the shape 374

parameter(s) is small (e.g. scenarios 10, 15-18). The reason is that GK obtains 375

approximate generalized pivotal quantities based on the normal approximation of the 376

distribution with a cube root transformation, and such approximation could be very 377

inaccurate when shape parameter is small [22]. For all scenarios, the PB method has 378

inflated type I errors when sample sizes are small. As sample sizes increase, the PB 379

method shows improved type I error control. The type I error of two sample t-test 380

converges to nominal level as sample sizes increase, as guaranteed by the center limit 381

theorem. However, it can have inflated type I errors when sample sizes are less than 382

(50, 50), especially when the disparity between two distributions is obvious (e.g. when 383

P (Y1 > Y2) is larger than 0.555). For the first three scenarios for which two 384

Exp-gamma distributions are identical, the WMW test has excellent type I error control. 385

However, as the value of P (Y1 > Y2) deviates from 0.5, the WMW test tends to have 386

more severely inflated type I errors when sample sizes increase. Moreover, the 387

magnitude of type I error inflation increases as the value of P (Y1 > Y2) becomes larger. 388

Note that scenarios 2, 12, 16, and 18 in Table 1 are the scenario D, C, B and A, 389

respectively, discussed in Section 3.2 and the type I errors of two sample t-test and the 390

WMW test are presented in Fig 4 and Fig 5. To help to visualize the performance of 391

the proposed methods, Fig 6 presents the type I errors obtained GC , GW , GK , and 392

PB, for these four scenarios. 393

Table 2 presents estimated power of hypothesis testing based on proposed methods 394

(GC , GW , GK , and PB), in comparison with t-test and the WMW test. 395

Reflecting on the type I error control presented in Table 1, caution should be 396

exercised while reading estimated power and making comparisons between methods. 397
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Note the following: 1) the power for the WMW method when the value of P (Y1 > Y2) 398

deviates from 0.5 is not interpretable due to its inflated type I error for these cases, 2) 399

the power for two sample t-test might be inflated when sample sizes less than 50 due to 400

its inflated type I error for these cases; 3) the power for the PB method could be 401

inflated due to its poor type I error control, especially at small sample sizes; 4) GK can 402

have inflated power due to inflated type I error when the shape parameter (α) is small. 403

For example, for scenarios 26 and 27 where the value of P (Y1 > Y2) has a larger 404

deviation from 0.5, the WMW test and two sample t-test have higher power than that 405

of GC , GW and GK when sample sizes are small. Such observations are due to the 406

inflated type I error for the WMW test and the two sample t-test, hence it should not 407

be interpreted as an evidence that t-test and the WMW test are more powerful. 408

Overall speaking, the two generalized inference methods with good type I error 409

control, i.e. GC and GW , have comparable power. As sample sizes are greater than 410

(50, 50), the powers by two sample t-test and the PB test are comparable to those of 411

GC and GW . 412

In summary, we recommend both GC and GW methods for hypothesis testing for 413

two independent Exp-gamma distributions due to the fact that they provide decent 414

power with excellent type I error control, even when sample sizes are small. The GK 415

method is not recommended because it has inflated type I errors for certain scenarios, 416

such as when the shape parameter is less than 0.5. The PB method has inflated type I 417

errors when sample sizes are small, leading to an incorrect rejection of null hypothesis. 418

Two sample t-test may exhibit inflated type I errors at small sample sizes. The WMW 419

test only has controlled type I errors when two distributions are identical, hence it is not 420

a reliable choice. 421

5.2 Confidence intervals 422

The proposed three methods based on the generalized pivots (i.e. GC , GW , and GK), 423

and parametric bootstrap (PB) method can provide estimated confidence interval for 424

the mean difference between two Exp-gamma distributions. Additionally, the estimated 425

confidence intervals by two sample t-test are also provided for comparison purpose. 426

Note that theoretically, the WMW method can not yield estimated confidence interval 427

for the mean difference. 428

Simulation studies are carried out to evaluate the performances of proposed methods 429

regarding coverage probabilities and the average lengths of proposed confidence 430

intervals for mean difference of two independent Exp-gamma distributions. The sample 431

sizes are set as (10, 10), (20, 20), (30, 30), (20, 50), (50, 50), (50, 75), and (75, 75). We 432

considered settings with equal means (i.e. η = 0), as well as different means (i.e. η ̸= 0), 433

and with equal/unequal shape parameters. For each parameter setting, 2000 samples 434

are simulated. For generalized confidence intervals, 2000 Rη’s are obtained. For PB 435

method, B = 2000 bootstrap samples are used. 436

Table 3 presents the coverage probabilities and average lengths of proposed 437

confidence intervals. Overall speaking, the GC and GW methods that based on the 438

generalized pivots maintain satisfactory coverage probabilities for all settings except 439

that they might be slightly conservative at small sample sizes such as (10, 10), while the 440

GK method is not recommended when the shape parameter is less than 0.5, due to the 441

fact that this normal-based method does not work well when shape parameter is 442

small [22]. The confidence intervals obtained by the PB method are liberal when 443

sample sizes are small, although its coverage probabilities converge to nominal level 444

when sample sizes reach (50, 50). The coverage probabilities of the two sample t-test 445

converges to nominal level as sample sizes increase. However, for some scenarios, it can 446

be liberal when sample sizes are small, such as scenario 19 as sample sizes being less 447

than (30, 30), and scenario 20 at (10, 10). In terms of the length of confidence intervals, 448
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the PB method appears to provide shortest confidence intervals among the proposed 449

methods when sample sizes are small. However, this observation is due to the fact that 450

the PB method is liberal at small sizes, hence it should not be interpreted. As sample 451

sizes reach (50, 50), all four methods are generally comparable in terms of length. 452

In summary, generally we recommend the proposed GC and GW methods over GK , 453

PB method, and two sample t-test, due to the fact that GC and GW methods maintain 454

satisfactory coverage probabilities even at small sample sizes and when the shape 455

parameters are small. 456

6 Data examples 457

In this section, we illustrate the proposed method using publicly accessible data from a 458

recent study that measured mRNA expression and protein abundance at single cell level 459

simultaneously by Hao et.al. [5]. In this study, peripheral blood mononuclear cell 460

(PBMC) samples from eight volunteers were collected at pre (day 0) and post HIV 461

vaccination (day 3 and 7), yielding a total of 210,911 cells. CITE-seq methods was used 462

to simultaneously quantify RNA and surface protein abundance in in single cells via the 463

sequencing of antibody-derived tags (ADTs). Analyses identified 57 clusters of different 464

types of cells, encapsulated all major and minor immune cell types and revealed striking 465

cellular diversity. The Wilcoxon-Mann-Whitney (WMW) test was used to investigate 466

the protein abundance differences with log transformation. 467

For demonstration purpose without delving deeply into the details of biology of 468

immune cells functions, we focus on protein abundance data in the cluster of 469

plasmacytoid dendritic Cell (pDC) cells. The pDC releases type 1 interferon in response 470

to viral infection [47], thus could serve as an indicator of immune response to 471

vaccination. Although pDC cell counts are usually low in PBMC, as shown in Hao’s 472

study, it may play a critical role in regulating gene expression and innate immune 473

responses [48]. 474

In this section, different analyses are performed to investigate the protein abundance 475

variation between donors and across time points within pDC cells. According to the 476

simulation results in Section 5, the PB method is not suitable, as it yields inflated type 477

I errors when sample sizes are small, which is very common for protein abundance data. 478

Furthermore, GK , one of the methods based on generalized pivots, generates inaccurate 479

results when the shape parameter is small, potentially leading to unreliable testing 480

outcomes. Thus, we use two recommended testing approaches based on the generalized 481

pivots (i.e.GC and GW ) on the log-transformed data. For comparison purpose, we also 482

analyze data using as well as two sample t-test and the WMW test, which are 483

commonly used in the differential analysis of protein abundance data. More details 484

described in Example 1 and Example 2 below. To enable direct comparisons between 485

different donors regardless of differences in sample size, we use relative counts (RC) of 486

protein abundance. In the settings of this single-cell studies, the sample sizes refer to 487

the counts of pDC cells, making our proposed methods ideal choices for modeling them. 488

Example 1. Comparison of log-transformed protein abundance data for two different 489

donors at same time point. 490

Analyzing protein abundance data across different donors at given time points allows 491

us to perceive variations in the immune response to vaccination among different 492

individuals. Since the consistency of immune response is crucial for vaccine success, 493

accurate assessment of protein levels at fixed time related to vaccination is essential for 494

evaluating its quality and effectiveness. 495

Table 4 lists summary statistics for four genes: Rat-IgG1-2 (donor P1 vs. P3 at day 496

7), CD3-2 (donor P3 vs. P8 at day 0), CD226 (donor P1 vs. P6 at day 0), and CD44-2 497
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(donor P1 vs. P3 at day 3). The estimated p-values as well as confidence intervals by 498

the proposed methods (GC and GW ) and two sample t-test and the WMW test are also 499

presented. For these four proteins, the GC and GW methods yield different conclusions 500

in terms of significance, in contrast to two sample t-test and the WMW test. 501

As observed in simulation studies, the two sample t-test is unreliable as the disparity 502

between two distributions is large, especially when sample sizes are less than (50, 50). 503

Moreover, the WMW test is very sensitive to difference between the shapes of 504

distributions. For this data set, the sample sizes (counts of pDC cells) are generally 505

small, and the data exhibit different distributions for different donors at same time 506

point. Therefore, two sample t-test and the WMW test should not be trusted for their 507

testing results. 508

For instance, when comparing the protein abundance of Rat-IgG1-2 between donor 509

P1 and donor P3 at day 7, our proposed approaches (GC and GW ) reveal significant 510

mean difference. However, two sample t-test and the WMW test fail to identify this 511

difference. On the other hand, when examining the protein abundance of CD226 512

between donor P1 and donor P6 at day 0, our GC and GW methods indicate there are 513

no significance between two donors, whereas two sample t-test and the WMW test state 514

otherwise. These erroneous conclusions based on t-test and the WMW test may lead us 515

to mis-characterize the nature of vaccine response related to these genes. 516

Furthermore, the estimated 95% confidence intervals for the mean difference (η) are 517

also presented in Table 4, and GC and GK methods generally have the comparable 518

lengths. 519

Example 2. Comparison of log-transformed protein abundance data at two different 520

times for same donor. 521

One important aspect of the study by Hao et al. [5] is to characterize the response to 522

vaccination for each of previously identified cell types, with particular interests in 523

identifying cell populations that contribute most strongly to the innate immune 524

response. This response is expected to be highly activated at the first vaccinated time 525

point (day 3), and subsequently dampen in the second time point (day 7), as observed 526

with another non-replicating viral vectored HIV vaccine [49]. 527

Table 5 lists summary statistics for three genes (CD48, CD45-1, and CD337) of 528

donor P8 for day 0 vs. day 3, and day 0 vs. day 7. The estimated p-values as well as 529

confidence intervals by the proposed methods (GC and GW ) and the commonly used 530

two sample t-test and the WMW test are also presented. For these three genes, the 531

proposed methods may or may not yield different conclusions in terms of significance, in 532

comparison with two sample t-test and the WMW test. 533

For example, for comparing the protein abundance of CD48 between day 0 and day 3 534

for donor P8, our proposed approaches (GC and GW ) identify significant mean 535

difference in log-transformed samples. Furthermore, the immune response is dampened 536

at day 7, and the GC and GW methods yield insignificant difference from day 0 to 7. 537

This pattern fits the characteristics of innate immune response stated above. However, 538

both two sample t-test and the WMW test fail to generate significant differences 539

between day 0 and day 3, indicating that the changes of CD48 abundance do not fit the 540

pattern. Similar patterns are observed for CD337 and CD45-1 by the GC and GW 541

methods, while such discoveries would have been missed by either the WMW test or 542

t-test. 543

Interestingly, genes CD48 [50], CD45-1 [51] and CD337 [48] are all playing important 544

roles in human’s immune system. The observed multiple protein abundance 545

modifications in donor P8 may indicate a different innate immune response compared to 546

other donors, which do not show the patterns of changes described above. This 547

discovery may point to potential existence of minority subtypes with different responses 548
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to the vaccine. A closer examination of changes in immune-related gene profiles in 549

response to the vaccine might have clinical value. 550

Furthermore, the estimated 95% confidence intervals for the mean difference (η) by 551

proposed methods are presented in Table 5. 552

7 Summary and discussion 553

In genomics, the two sample t-test and the Wilcoxon-Mann-Whitney (WMW) test are 554

commonly used to identify proteins which can differentiate between different experiment 555

conditions, and the comparison is usually applied on log-transformed protein abundance 556

data [39]. However, the protein abundance data could be modeled by gamma 557

distribution [3, 52,53], and the shape of protein abundance distribution needs to be 558

taken into consideration in differential analysis [19]. 559

In this paper, we demonstrated the inappropriateness of using two sample t-test and 560

the WMW test for testing the equality of means of two log-transformed protein 561

abundance samples. Several methods for two-sample hypothesis testing and confidence 562

interval estimation for mean difference of two independent Exp-gamma distributions are 563

proposed. 564

Through comprehensive simulation studies, we demonstrated that two proposed 565

methods (i.e. GC and GW ) based on the concepts of generalized inference can have 566

excellent type I error control for testing the equality of two Exp-gamma means, and can 567

provide satisfactory confidence intervals for Exp-gamma mean difference, with 568

consistent performance despite parameter settings and sample sizes. 569

We expect the proposed methods have broad applicability in differential analysis in 570

genomics studies and other applied fields. The proposed approaches for hypothesis 571

testing and confidence interval estimation are easy to implement and the running time 572

of these methods is quite feasible on standard computer platforms. 573

The R program is available at request from Dr. Yan at li.yan@roswellpark.org. 574
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Appendices 727

Appendix 1. The characteristics of exponential-gamma 728

(Exp-gamma) distribution 729

Let Y = ln(X) stands for a random variable from Exp-gamma distribution, where 730

X ∼ gamma(α, β). 731

First consider the special case that β = 1. In this case, the probability density 732

function of the X is 733

fX(x) =
1

Γ(α)
xα−1 exp[−x],

and the probability density function of Y is 734

fY (y) =
1

Γ(α)
exp[αy − ey].

The mean of Y equals to ψ(α)− lnβ, and the variance can be calculated as follows: 735

V ar(Y ) = E(Y 2)− E(Y )2

=
1

Γ(α)

d2

dα2

∫
ℜ
exp(αy − ey)dy − E(Y )2

=
d2

dα2
ln Γ(α)

Noting that 1/β acts as a scaling parameter on a gamma-distributed random 736

variable, 737

X ∼ Gamma(α, 1) ⇒ 1

β
X ∼ Gamma(α, β),

and that a scaling parameter acts additively on the logarithmic expectation of a random 738

variable, 739

E[(ln cX)2]− E(ln cX)2

= E[(lnX + ln c)2]− (E(lnX) + ln c)2

=
d2

dα2
ln Γ(α) = ψ(1)(α)

Hence the variance of Y doe snot depend on β. 740

The moment generating function M(t) of Y is 741

M(t) = E[etlnX ] = E[Xt]

=
βα

Γ(α)

∫ ∞

0

xα+t−1e−βxdx
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Noting that f(x;α+ t, β) = xα+t−1e−βxβα+t

Γ(α+t) , then 742

M(t) =
βα

Γ(α)

Γ(α+ t)

βα+t
βα+t

Γ(α+ t)

∫ ∞

0

xα+t−1e−βxdx

=
βα

Γ(α)

Γ(α+ t)

βα+t
(F (∞;α+ t, β)− F (0;α+ t, β))

=
Γ(α+ t)

Γ(α)βt

Hence the cumulant generating function is 743

K(t) = lnM(t)

= lnΓ(α+ t)− lnΓ(α)− tln(β)

and its mth order derivative is K(m)(0) = ψ(m−1)(α), m ≥ 2. Therefore, the skewness 744

(skew) and kurtosis (kurt) of Y can be easily obtained: 745

skew =
E[(Y − E[Y ])3]

V ar(Y )3/2
=

ψ(2)(α)

[ψ(1)(α)]3/2
,

kurt =
E[(Y − E[Y ])4]

V ar(Y )4/2
=

ψ(3)(α)

[ψ(1)(α)]2
,

where ψ(1)(), ψ(2)(), and ψ(3)() are the second derivative, the third derivative, and the 746

forth derivative of the log gamma function, respectively. 747
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Appendix 2. Generalized pivots and generalized test variables 748

In the following, we will briefly review the concepts of generalized pivots and 749

generalized test variables developed by Tsui and Weerahandi [40] and Weerahandi [41]. 750

Suppose that a random sample, Y = (Y1, . . . , Yn)
T from a distribution which 751

depends on the parameter θ = (ψ,ν) where ϕ is the parameter of interest and νT is a 752

vector of nuisance parameters. A generalized pivots R(Y ;y, ψ,ν), where y is the 753

observed value of Y , for interval estimation has the following to properties [41]: 754

(1) R(Y ;y, ψ,ν) has a distribution free of unknown parameters. 755

(2) The value of R(y;y, ψ,ν) is ψ. 756

Let that Rp be the 100pth percentile of R. Then, (Rp/2, R1−p/2) is the 100p% 757

two-sided generalized confidence interval for ψ. 758

Consider testing H0 : ϕ = ψ0 vs. H0 : ϕ > ψ0, where psi0 is a specified quantity. A 759

generalized test variable of the form T (Y ;y, ψ,ν) satisfies the following conditions [40]: 760

(1) For fixed y, the distribution of T (Y ;y, ψ,ν) is free of ν. 761

(2) The value of T (y;y, ψ,ν) is free of unknown parameters. 762

(3) The fixed y and ν, and for all t, P (T (Y ;y, ψ,ν) > t) is either an increasing or a 763

decreasing function of ψ. 764

A generalized extreme region is defined as C = [T (Y ;y, ψ,ν) > T (y;y, ψ,ν)] if 765

T (Y ;y, ψ,ν) is stochastically increasing in ψ; otherwise, 766

C = [T (Y ;y, ψ,ν) < T (y;y, ψ,ν)]. The generalized p-value is defined as P (C | ψ0). 767

May 15, 2024 21/31



Fig 1. Probability density of Y ∼ Exp-gamma(α, β) and X = eY ∼ gamma(α, β), for
(α, β) = (1, 1) and (3, 1), respectively.

Fig 2. Plot of skewness and excess kurtosis for Exp-gamma distribution as α ranges
from 0.1 to 50. When α = 0.7689, the excess kurtosis is 0.
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Fig 3. Density plots of samples from four pair of comparisons Y1 vs Y2 where
Y1 ∼ Exp-gamma(α1, β1) vs. Y2 ∼ Exp-gamma(α2, β2). (A : (0.2, 0.005) vs. (5, 4.509);
B: (0.5, 0.14) vs. (10, 9.504); C: (1, 0.561) vs. (5, 4.509); D: (5, 0.048) vs. (5, 0.048).)
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Fig 4. Estimated type I errors of two sample t-test for testing the equality of mean of
two Exp-gamma distributions as a function of sample sizes; α = 0.05. The middle
dashed line represents the nominal significance level at 0.05; and upper and lower
dashed lines are upper and lower limits for satisfactory type I error rates, which are 0.06
and 0.04 with 2000 simulations runs, respectively.
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Fig 5. Estimated type I errors of the Wilcoxon-Mann-Whitney (WMW) test for testing
the equality of mean of two Exp-gamma distributions as a function of sample sizes;
α = 0.05. The middle dashed line represents the nominal significance level, which is set
to 0.05; and upper and lower dashed lines are upper and lower limits for the type I error
rates, which are 0.06 and 0.04, respectively.
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Fig 6. Estimated type I errors of the hypothesis testing based on generalized pivots
(GC , GW , and GK) and parametric bootstrap method (PB) for testing the equality of
mean of two Exp-gamma distributions as a function of sample sizes; α = 0.05. The
middle dashed line represents the nominal significance level, which is set to 0.05; and
upper and lower dashed lines are upper and lower limits for the type I error rates, which
are 0.06 and 0.04, respectively.
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Table 1. Estimated type I errors for testing the equality of means of two independent
Exp-gamma distributions (2000 simulations).

Scenario
(α1, β1)

Mean P (Y1 > Y2)
(skew1, ex-kurt1)†

Sample size
Type I Error

(α2, β2) (skew2, ex-kurt2) GC GW GK PB t-test WMW

1 (1, 1.5) -0.983 0.500 (-1.140, -0.600) (10,10) 0.036 0.057 0.044 0.099 0.058 0.056

(1, 1.5) (-1.140, -0.600) (20,20) 0.038 0.042 0.040 0.066 0.049 0.052

(20,50) 0.041 0.048 0.036 0.062 0.050 0.048

(30,30) 0.038 0.042 0.031 0.054 0.039 0.044

(50,50) 0.042 0.041 0.042 0.052 0.046 0.045

(50,75) 0.042 0.049 0.043 0.061 0.053 0.047

(75,75) 0.033 0.037 0.037 0.044 0.038 0.041

2* (5, 0.048) 4.541 0.500 (-0.469, -2.563) (10,10) 0.036 0.035 0.037 0.084 0.047 0.046

(5, 0.048) (-0.469, -2.563) (20,20) 0.039 0.028 0.036 0.057 0.045 0.049

(20,50) 0.045 0.042 0.042 0.064 0.052 0.049

(30,30) 0.049 0.043 0.044 0.062 0.048 0.056

(50,50) 0.057 0.045 0.057 0.057 0.056 0.055

(50,75) 0.046 0.040 0.044 0.052 0.047 0.046

(75,75) 0.041 0.037 0.041 0.040 0.042 0.049

3 (50, 0.048) 4.634 0.500 (-0.142, -2.960) (10,10) 0.043 0.034 0.040 0.085 0.052 0.048

(50, 0.048) (-0.142, -2.960) (20,20) 0.057 0.047 0.051 0.077 0.057 0.057

(20,50) 0.045 0.046 0.046 0.057 0.051 0.054

(30,30) 0.046 0.047 0.049 0.061 0.055 0.055

(50,50) 0.050 0.045 0.049 0.050 0.047 0.048

(50,75) 0.052 0.044 0.048 0.054 0.050 0.043

(75,75) 0.056 0.048 0.055 0.055 0.053 0.056

4 (5, 0.048) 4.541 0.512 (-0.469, -2.563) (10,10) 0.028 0.030 0.031 0.073 0.043 0.046

(10, 0.101) (-0.324, -2.790) (20,20) 0.048 0.041 0.045 0.064 0.051 0.058

(20,50) 0.054 0.051 0.047 0.068 0.057 0.071

(30,30) 0.044 0.046 0.046 0.061 0.048 0.053

(50,50) 0.045 0.041 0.047 0.047 0.048 0.051

(50,75) 0.054 0.056 0.056 0.060 0.056 0.072

(75,75) 0.053 0.046 0.055 0.051 0.051 0.064

5 (1.5, 4.077) -1.369 0.513 (-0.917, -1.388) (10,10) 0.022 0.030 0.029 0.078 0.042 0.045

(2, 6) (-0.780, -1.812) (20,20) 0.034 0.032 0.033 0.053 0.038 0.045

(20,50) 0.049 0.044 0.045 0.061 0.052 0.049

(30,30) 0.045 0.040 0.041 0.058 0.050 0.052

(50,50) 0.039 0.037 0.042 0.052 0.042 0.052

(50,75) 0.048 0.038 0.046 0.054 0.047 0.052

(75,75) 0.044 0.041 0.041 0.054 0.047 0.057

6 (2, 0.200) 2.032 0.522 (-0.780, -1.812) (10,10) 0.028 0.034 0.029 0.086 0.046 0.047

(4, 0.460) (-0.529, -2.443) (20,20) 0.040 0.038 0.040 0.057 0.047 0.053

(20,50) 0.050 0.050 0.041 0.070 0.053 0.087

(30,30) 0.048 0.044 0.046 0.059 0.050 0.060

(50,50) 0.050 0.041 0.048 0.054 0.051 0.066

(50,75) 0.051 0.048 0.054 0.061 0.059 0.087

(75,75) 0.051 0.046 0.050 0.052 0.049 0.082

7 (2, 0.300) 1.627 0.531 (-0.780, -1.812) (10,10) 0.034 0.040 0.038 0.080 0.054 0.054

(6, 1.083) (-0.425, -2.640) (20,20) 0.048 0.047 0.046 0.071 0.053 0.078

(20,50) 0.050 0.051 0.045 0.078 0.064 0.117

(30,30) 0.049 0.047 0.050 0.064 0.053 0.089

(50,50) 0.056 0.049 0.054 0.060 0.058 0.100

(50,75) 0.048 0.050 0.044 0.052 0.047 0.106

(75,75) 0.055 0.052 0.055 0.055 0.054 0.124

8 (3, 2.516) 0 0.532 (-0.621, -2.237) (10,10) 0.041 0.041 0.037 0.085 0.056 0.065

(20, 19.502) (-0.226, -2.898) (20,20) 0.042 0.037 0.042 0.058 0.046 0.076

(20,50) 0.048 0.050 0.044 0.069 0.052 0.126

(30,30) 0.047 0.047 0.046 0.062 0.048 0.082

(50,50) 0.054 0.058 0.051 0.063 0.057 0.117

(50,75) 0.055 0.054 0.050 0.061 0.058 0.129

(75,75) 0.054 0.051 0.062 0.057 0.055 0.116

9 (1, 1.500) -0.983 0.534 (-1.140, -0.600) (10,10) 0.037 0.048 0.038 0.095 0.062 0.059

(2, 4.077) (-0.780, -1.812) (20,20) 0.040 0.043 0.036 0.060 0.047 0.067

(20,50) 0.046 0.055 0.041 0.075 0.060 0.104

(30,30) 0.049 0.050 0.051 0.068 0.059 0.085

(50,50) 0.044 0.048 0.047 0.066 0.052 0.097

(50,75) 0.047 0.050 0.046 0.057 0.051 0.104

(75,75) 0.035 0.039 0.044 0.043 0.043 0.114

* Scenarios discussed in Section 3.2. Scenario 2 is the scenario D in Section 3.2.
† skewi and ex-kurti are defined in (3), i = 1, 2.

May 15, 2024 27/31



Table 1 (cont.). Estimated type I errors for testing the equality of means of two
independent Exp-gamma distributions (2000 simulations).

Scenario
(α1, β1)

Mean P (Y1 > Y2)
(skew1, ex-kurt1)†

Sample size
Type I Error

(α2, β2) (skew2, ex-kurt2) GC GW GK PB t-test WMW

10 (0.5, 0.14) 0 0.553 (-1.535, 1) (10,10) 0.035 0.051 0.035 0.098 0.060 0.069

(1, 0.621) (-1.140, -0.600) (20,20) 0.045 0.059 0.047 0.072 0.060 0.097

(20,50) 0.035 0.053 0.027 0.060 0.056 0.117

(30,30) 0.041 0.062 0.056 0.071 0.063 0.125

(50,50) 0.030 0.051 0.049 0.050 0.045 0.141

(50,75) 0.034 0.054 0.052 0.059 0.056 0.186

(75,75) 0.041 0.063 0.086 0.062 0.053 0.218

11 (1, 0.207) 1 0.555 (-1.140, -0.600) (10,10) 0.046 0.054 0.044 0.108 0.072 0.090

(5, 1.659) (-0.469, -2.563) (20,20) 0.038 0.046 0.039 0.066 0.055 0.107

(20,50) 0.043 0.051 0.035 0.068 0.052 0.167

(30,30) 0.044 0.047 0.041 0.064 0.054 0.133

(50,50) 0.047 0.056 0.046 0.066 0.059 0.175

(50,75) 0.044 0.057 0.046 0.057 0.055 0.221

(75,75) 0.038 0.042 0.048 0.042 0.046 0.246

12* (1, 0.561) 0 0.556 (-1.140, -0.600) (10,10) 0.046 0.050 0.038 0.106 0.066 0.078

(5, 4.509) (-0.469, -2.563) (20,20) 0.044 0.052 0.042 0.079 0.059 0.117

(20,50) 0.048 0.055 0.041 0.082 0.067 0.182

(30,30) 0.050 0.056 0.041 0.068 0.053 0.134

(50,50) 0.043 0.043 0.044 0.056 0.055 0.172

(50,75) 0.043 0.051 0.041 0.056 0.053 0.207

(75,75) 0.043 0.045 0.053 0.052 0.052 0.226

13 (1, 0.561) 0 0.564 (-1.140, -0.600) (10,10) 0.047 0.052 0.038 0.103 0.063 0.091

(10, 9.504) (-0.324, -2.790) (20,20) 0.036 0.045 0.038 0.068 0.055 0.122

(20,50) 0.052 0.057 0.042 0.075 0.058 0.213

(30,30) 0.051 0.052 0.044 0.068 0.060 0.160

(50,50) 0.042 0.052 0.046 0.057 0.054 0.215

(50,75) 0.037 0.045 0.040 0.056 0.050 0.243

(75,75) 0.044 0.050 0.058 0.053 0.052 0.277

14 (1, 0.561) 0 0.569 (-1.140, -0.600) (10,10) 0.051 0.053 0.041 0.112 0.061 0.110

(50, 49.501) (-0.142, -2.960) (20,20) 0.051 0.056 0.051 0.082 0.065 0.152

(20,50) 0.040 0.046 0.032 0.065 0.048 0.222

(30,30) 0.045 0.049 0.050 0.067 0.059 0.191

(50,50) 0.040 0.046 0.042 0.055 0.050 0.251

(50,75) 0.042 0.049 0.042 0.055 0.049 0.288

(75,75) 0.039 0.045 0.046 0.043 0.046 0.326

15 (0.5, 0.052) 1 0.587 (-1.535, 1) (10,10) 0.042 0.057 0.042 0.106 0.073 0.119

(5, 1.659) (-0.469, -2.563) (20,20) 0.045 0.062 0.051 0.072 0.067 0.193

(20,50) 0.042 0.061 0.042 0.076 0.064 0.299

(30,30) 0.044 0.055 0.054 0.076 0.068 0.255

(50,50) 0.042 0.061 0.061 0.067 0.064 0.334

(50,75) 0.036 0.054 0.065 0.066 0.058 0.409

(75,75) 0.042 0.057 0.112 0.064 0.061 0.480

16* (0.5, 0.140) 0 0.593 (-1.535, 1) (10,10) 0.040 0.056 0.039 0.113 0.081 0.131

(10, 9.504) (-0.324, -2.790) (20,20) 0.035 0.055 0.048 0.066 0.061 0.211

(20,50) 0.047 0.053 0.039 0.074 0.068 0.293

(30,30) 0.043 0.056 0.061 0.078 0.073 0.274

(50,50) 0.034 0.051 0.061 0.056 0.052 0.390

(50,75) 0.037 0.055 0.066 0.063 0.058 0.436

(75,75) 0.044 0.065 0.111 0.068 0.061 0.508

17 (0.5, 0.031) 1.500 0.595 (-1.535, 1) (10,10) 0.039 0.056 0.041 0.100 0.074 0.140

(10, 2.121) (-0.324, -2.790) (20,20) 0.039 0.057 0.051 0.071 0.062 0.196

(20,50) 0.041 0.053 0.034 0.070 0.067 0.299

(30,30) 0.035 0.047 0.049 0.059 0.058 0.269

(50,50) 0.029 0.040 0.056 0.053 0.047 0.382

(50,75) 0.043 0.060 0.074 0.072 0.066 0.441

(75,75) 0.030 0.042 0.102 0.052 0.049 0.519

18* (0.2, 0.005) 0 0.621 (-1.868, 2.440) (10,10) 0.034 0.054 0.076 0.113 0.094 0.189

(5, 4.509) (-0.469, -2.563) (20,20) 0.032 0.050 0.250 0.074 0.076 0.297

(20,50) 0.037 0.056 0.174 0.072 0.073 0.394

(30,30) 0.034 0.057 0.391 0.069 0.073 0.393

(50,50) 0.035 0.055 0.676 0.059 0.062 0.547

(50,75) 0.036 0.060 0.667 0.068 0.067 0.597

(75,75) 0.042 0.059 0.908 0.066 0.060 0.695

* Scenarios discussed in Section 3.2. Scenarios 12, 16, and 18 are the scenarios C, B, and A, respectively.
† skewi and ex-kurti are defined in (3), i = 1, 2.
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Table 2. Estimated powers for testing the equality of means of two independent
Exp-gamma distributions under H1 : δ1 ̸= δ2 (2000 simulations).

Scenario
(α1, β1) δ1, δ2

P (Y1 > Y2)
(skew1, ex-kurt1)†

Sample size
Power

(α2, β2) η = δ1 − δ2 (skew2, ex-kurt2) GC GW GK PB t-test WMW

19 (5, 2.735) 0.500, 0 0.509 (-0.469, -2.563) (10,10) 0.134 0.135 0.080 0.144 0.065 0.081

(0.5, 0.140) 0.5 (-1.535, 1) (20,20) 0.177 0.211 0.093 0.167 0.093 0.081

(20,50) 0.215 0.243 0.094 0.193 0.109 0.133

(30,30) 0.242 0.292 0.130 0.234 0.167 0.080

(50,50) 0.376 0.457 0.180 0.375 0.317 0.086

(50,75) 0.374 0.454 0.188 0.381 0.316 0.102

(75,75) 0.517 0.568 0.286 0.500 0.441 0.080

(75,75) 0.932 0.934 0.924 0.943 0.935 0.856

20 (5, 12.257) -1, -1.5 0.607 (-0.469, -2.563) (10,10) 0.218 0.226 0.173 0.245 0.138 0.125

(1, 2.516) 0.500 (-1.140, -0.600) (20,20) 0.434 0.424 0.362 0.417 0.321 0.227

(20,50) 0.459 0.485 0.390 0.450 0.337 0.305

(30,30) 0.573 0.561 0.508 0.554 0.479 0.298

(50,50) 0.779 0.809 0.756 0.786 0.757 0.478

(50,75) 0.804 0.839 0.774 0.808 0.772 0.538

(75,75) 0.921 0.935 0.901 0.916 0.902 0.613

21 (5, 1.659) 1,0 0.620 (-0.469, -2.563) (10,10) 0.376 0.376 0.252 0.363 0.179 0.163

(0.5, 0.14) 1 (-1.535, 1) (20,20) 0.620 0.650 0.487 0.602 0.449 0.264

(20,50) 0.656 0.681 0.478 0.623 0.467 0.374

(30,30) 0.777 0.821 0.666 0.769 0.685 0.376

(50,50) 0.950 0.963 0.880 0.952 0.933 0.560

(50,75) 0.947 0.966 0.889 0.950 0.933 0.620

(75,75) 0.995 0.996 0.969 0.990 0.985 0.705

22 (2, 1.5) 0.017, -0.577 0.640 (-0.469, -2.563) (10,10) 0.171 0.221 0.175 0.285 0.181 0.167

(1, 1) 0.594 (-1.140,-0.600) (20,20) 0.438 0.426 0.408 0.471 0.416 0.349

(20,50) 0.545 0.549 0.493 0.534 0.443 0.440

(30,30) 0.603 0.573 0.557 0.618 0.565 0.474

(50,50) 0.810 0.799 0.810 0.831 0.810 0.696

(50,75) 0.864 0.870 0.863 0.889 0.858 0.769

(75,75) 0.932 0.934 0.924 0.943 0.935 0.856

23 (3, 5) -0.687,-1.187 0.688 (-0.621, -2.237) (10,10) 0.224 0.261 0.251 0.384 0.290 0.257

(2, 5) 0.500 (-0.780, -1.812) (20,20) 0.562 0.517 0.561 0.616 0.562 0.545

(20,50) 0.739 0.710 0.714 0.745 0.675 0.695

(30,30) 0.754 0.720 0.745 0.781 0.758 0.729

(50,50) 0.931 0.924 0.933 0.939 0.931 0.910

(50,75) 0.967 0.966 0.968 0.971 0.967 0.952

(75,75) 0.992 0.987 0.990 0.992 0.990 0.988

24 (2, 5) -1.187,-1.880 0.741 (-0.780, -1.812) (10,10) 0.313 0.354 0.353 0.572 0.459 0.439

(2, 10) 0.693 (-0.780, -1.812) (20,20) 0.658 0.691 0.696 0.776 0.749 0.770

(20,50) 0.752 0.790 0.761 0.885 0.868 0.896

(30,30) 0.862 0.871 0.873 0.910 0.893 0.906

(50,50) 0.987 0.984 0.987 0.988 0.989 0.994

(50,75) 0.994 0.992 0.994 0.996 0.995 0.998

(75,75) 1.000 1.000 1.000 1.000 1.000 1.000

25 (5, 1.5) 1.101,0.517 0.773 (-0.469, -2.563) (10,10) 0.523 0.540 0.562 0.681 0.591 0.561

(3, 1.5) 0.584 (-0.621, -2.237) (20,20) 0.912 0.890 0.906 0.932 0.912 0.893

(20,50) 0.975 0.975 0.972 0.980 0.967 0.964

(30,30) 0.981 0.975 0.978 0.985 0.981 0.974

(50,50) 0.999 0.999 0.999 0.999 0.999 0.999

(50,75) 1.000 1.000 1.000 1.000 1.000 1.000

(75,75) 1.000 1.000 1.000 1.000 1.000 1.000

26 (3, 5) -0.687,-1.380 0.790 (-0.621, -2.237) (10,10) 0.485 0.538 0.530 0.728 0.646 0.617

(3, 10) 0.693 (-0.621, -2.237) (20,20) 0.875 0.892 0.895 0.929 0.917 0.921

(20,50) 0.947 0.956 0.950 0.975 0.975 0.983

(30,30) 0.978 0.981 0.982 0.990 0.987 0.987

(50,50) 1.000 1.000 1.000 1.000 1.000 1.000

(50,75) 1.000 1.000 1.000 1.000 1.000 1.000

(75,75) 1.000 1.000 1.000 1.000 1.000 1.000

27 (1, 1) -0.577,-1.964 0.800 (-1.140,-0.600) (10,10) 0.375 0.490 0.493 0.716 0.646 0.669

(1, 4) 1.386 (-1.140,-0.600) (20,20) 0.804 0.869 0.884 0.926 0.914 0.952

(20,50) 0.874 0.913 0.907 0.951 0.953 0.979

(30,30) 0.954 0.971 0.977 0.983 0.981 0.993

(50,50) 0.998 1.000 1.000 1.000 1.000 1.000

(50,75) 0.999 1.000 1.000 1.000 1.000 1.000

(75,75) 1.000 1.000 1.000 1.000 1.000 1.000

† skewi and ex-kurti are defined in (3), i = 1, 2.
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Table 3. Coverage probabilities and average lengths of proposed 95% confidence intervals† for mean
difference of two independent Exp-gamma distributions. (2000 simulations)

Scenario*
(α1, β1)

η Sample size
Coverage probability(Average length)

(α2, β2) GC GW GK PB t-test

2 (5, 0.048) 0 (10,10) 0.965 (1.021) 0.965 (0.994) 0.963 (0.970) 0.916 (0.773) 0.954 (0.872)

(5, 0.048) (20,20) 0.962 (0.627) 0.972 (0.652) 0.965 (0.628) 0.943 (0.569) 0.956 (0.599)

(20,50) 0.955 (0.523) 0.958 (0.531) 0.958 (0.527) 0.936 (0.476) 0.949 (0.499)

(30,30) 0.952 (0.496) 0.958 (0.517) 0.956 (0.503) 0.939 (0.468) 0.953 (0.485)

(50,50) 0.944 (0.375) 0.955 (0.391) 0.943 (0.375) 0.943 (0.370) 0.944 (0.373)

(50,75) 0.955 (0.341) 0.961 (0.353) 0.957 (0.341) 0.949 (0.335) 0.953 (0.339)

(75,75) 0.959 (0.304) 0.963 (0.313) 0.960 (0.305) 0.960 (0.303) 0.959 (0.303)

3 (50, 0.481) 0 (10,10) 0.958 (0.282) 0.966 (0.296) 0.960 (0.284) 0.915 (0.234) 0.949 (0.265)

(50, 0.481) (20,20) 0.944 (0.184) 0.954 (0.194) 0.949 (0.188) 0.923 (0.171) 0.943 (0.181)

(20,50) 0.956 (0.158) 0.955 (0.157) 0.955 (0.157) 0.943 (0.145) 0.949 (0.152)

(30,30) 0.954 (0.151) 0.954 (0.153) 0.952 (0.151) 0.940 (0.142) 0.945 (0.146)

(50,50) 0.951 (0.112) 0.955 (0.115) 0.951 (0.113) 0.950 (0.112) 0.953 (0.113)

(50,75) 0.949 (0.102) 0.956 (0.105) 0.952 (0.103) 0.947 (0.102) 0.951 (0.103)

(75,75) 0.945 (0.091) 0.952 (0.093) 0.946 (0.091) 0.945 (0.092) 0.948 (0.092)

4 (5, 0.048) 0 (10,10) 0.973 (0.864) 0.971 (0.850) 0.970 (0.841) 0.927 (0.664) 0.957 (0.756)

(10, 0.101) (20,20) 0.953 (0.536) 0.959 (0.554) 0.955 (0.539) 0.936 (0.490) 0.949 (0.516)

(20,50) 0.946 (0.481) 0.950 (0.486) 0.954 (0.493) 0.932 (0.439) 0.943 (0.465)

(30,30) 0.956 (0.435) 0.954 (0.441) 0.954 (0.430) 0.940 (0.404) 0.952 (0.418)

(50,50) 0.956 (0.323) 0.959 (0.330) 0.953 (0.321) 0.953 (0.318) 0.953 (0.321)

(50,75) 0.947 (0.307) 0.945 (0.308) 0.944 (0.305) 0.941 (0.298) 0.944 (0.302)

(75,75) 0.948 (0.259) 0.954 (0.265) 0.945 (0.259) 0.949 (0.262) 0.950 (0.261)

6 (2, 0.200) 0 (10,10) 0.973 (1.607) 0.967 (1.457) 0.972 (1.474) 0.914 (1.108) 0.955 (1.271)

(4, 0.460) (20,20) 0.961 (0.953) 0.963 (0.948) 0.961 (0.925) 0.943 (0.822) 0.954 (0.872)

(20,50) 0.951 (0.852) 0.951 (0.841) 0.960 (0.857) 0.930 (0.743) 0.948 (0.792)

(30,30) 0.952 (0.737) 0.957 (0.744) 0.954 (0.727) 0.941 (0.675) 0.951 (0.700)

(50,50) 0.951 (0.544) 0.959 (0.563) 0.953 (0.546) 0.947 (0.538) 0.949 (0.540)

(50,75) 0.949 (0.523) 0.953 (0.532) 0.947 (0.520) 0.939 (0.509) 0.942 (0.512)

(75,75) 0.950 (0.440) 0.955 (0.455) 0.950 (0.438) 0.949 (0.438) 0.951 (0.440)

7 (2, 0.300) 0 (10,10) 0.967 (1.521) 0.961 (1.387) 0.963 (1.414) 0.920 (1.055) 0.947 (1.219)

(6, 1.083) (20,20) 0.953 (0.897) 0.954 (0.887) 0.955 (0.871) 0.929 (0.772) 0.947 (0.823)

(20,50) 0.950 (0.827) 0.950 (0.817) 0.956 (0.834) 0.922 (0.720) 0.936 (0.769)

(30,30) 0.951 (0.699) 0.953 (0.705) 0.951 (0.690) 0.936 (0.641) 0.948 (0.664)

(50,50) 0.944 (0.515) 0.951 (0.529) 0.947 (0.517) 0.940 (0.506) 0.942 (0.509)

(50,75) 0.952 (0.502) 0.951 (0.502) 0.956 (0.502) 0.948 (0.489) 0.953 (0.491)

(75,75) 0.946 (0.413) 0.949 (0.424) 0.945 (0.411) 0.945 (0.413) 0.947 (0.415)

19 (5, 2.735) 0.5 (10,10) 0.955 (4.470) 0.944 (3.624) 0.961 (3.282) 0.880 (2.580) 0.916 (3.020)

(0.5, 0.140) (20,20) 0.962 (2.458) 0.939 (2.172) 0.941 (1.975) 0.920 (1.936) 0.928 (2.044)

(20,50) 0.955 (2.407) 0.942 (2.150) 0.967 (2.083) 0.931 (1.920) 0.940 (2.028)

(30,30) 0.970 (1.932) 0.952 (1.711) 0.949 (1.601) 0.938 (1.592) 0.936 (1.657)

(50,50) 0.968 (1.443) 0.949 (1.291) 0.948 (1.238) 0.941 (1.230) 0.949 (1.280)

(50,75) 0.968 (1.415) 0.944 (1.288) 0.931 (1.205) 0.934 (1.211) 0.944 (1.262)

(75,75) 0.961 (1.101) 0.951 (1.034) 0.894 (0.942) 0.944 (1.010) 0.949 (1.029)

20 (5, 12.257) 0.5 (10,10) 0.955 (2.472) 0.947 (2.084) 0.956 (2.091) 0.891 (1.545) 0.928 (1.796)

(1, 2.516) (20,20) 0.963 (1.401) 0.954 (1.318) 0.961 (1.302) 0.933 (1.160) 0.946 (1.234)

(20,50) 0.958 (1.341) 0.949 (1.258) 0.965 (1.307) 0.932 (1.120) 0.948 (1.199)

(30,30) 0.957 (1.083) 0.953 (1.043) 0.959 (1.039) 0.935 (0.952) 0.946 (0.997)

(50,50) 0.953 (0.816) 0.944 (0.786) 0.954 (0.787) 0.935 (0.743) 0.942 (0.764)

(50,75) 0.957 (0.805) 0.944 (0.767) 0.955 (0.775) 0.941 (0.730) 0.946 (0.752)

(75,75) 0.962 (0.634) 0.959 (0.630) 0.952 (0.607) 0.958 (0.615) 0.954 (0.620)

25 (5, 1.5) 0.583 (10,10) 0.957 (1.243) 0.957 (1.174) 0.956 (1.168) 0.906 (0.906) 0.942 (1.030)

(3, 1.5) (20,20) 0.956 (0.756) 0.963 (0.769) 0.960 (0.747) 0.940 (0.670) 0.951 (0.709)

(20,50) 0.961 (0.667) 0.961 (0.669) 0.963 (0.673) 0.934 (0.594) 0.949 (0.629)

(30,30) 0.950 (0.593) 0.958 (0.610) 0.951 (0.594) 0.932 (0.553) 0.944 (0.574)

(50,50) 0.948 (0.438) 0.959 (0.459) 0.949 (0.441) 0.947 (0.435) 0.950 (0.438)

(50,75) 0.951 (0.420) 0.950 (0.427) 0.950 (0.417) 0.948 (0.409) 0.949 (0.414)

(75,75) 0.943 (0.355) 0.952 (0.371) 0.941 (0.357) 0.944 (0.356) 0.944 (0.357)

26 (3, 5) 0.693 (10,10) 0.966 (1.459) 0.963 (1.356) 0.962 (1.332) 0.923 (1.033) 0.953 (1.166)

(3, 10) (20,20) 0.954 (0.862) 0.961 (0.873) 0.957 (0.846) 0.932 (0.759) 0.952 (0.800)

(20,50) 0.958 (0.706) 0.960 (0.707) 0.961 (0.710) 0.941 (0.634) 0.955 (0.665)

(30,30) 0.953 (0.675) 0.964 (0.692) 0.958 (0.675) 0.936 (0.622) 0.952 (0.644)

(50,50) 0.946 (0.500) 0.960 (0.523) 0.948 (0.503) 0.943 (0.489) 0.949 (0.497)

(50,75) 0.950 (0.455) 0.958 (0.474) 0.953 (0.458) 0.948 (0.448) 0.955 (0.454)

(75,75) 0.942 (0.402) 0.954 (0.421) 0.949 (0.407) 0.940 (0.398) 0.949 (0.404)

* Scenarios in Table 3 are subset of scenarios in Table 1 and Table 2.
† The confidence interval for the WMW test is not applicable.

May 15, 2024 30/31



Table 4. Testing the equality of protein abundance data from different donors at the same
time point (p-value and estimated confidence interval for mean difference).

Protein Time
Donor 1 n1 (α̂1, β̂1) δ̂1

η̂ Methods p-value
Est. CI *

Donor 2 n2 (α̂2, β̂2) δ̂2 (lower, upper)

Rat-IgG1-2 7 P1 22 (9.800, 0.366) 3.236 0.339 GC 0.039 ( 0.020, 0.717)

P3 17 (3.440, 0.163) 2.897 GW 0.033 ( 0.037, 0.719)

t-test 0.055 (-0.007, 0.684)

WMW 0.092 †

CD38-2 0 P3 19 (5.520, 0.075) 4.212 0.524 GC 0.027 (0.062, 1.290)

P8 12 (2.220, 0.044) 3.688 GW 0.034 (0.061, 1.190)

t-test 0.051 (-0.003, 1.060)

WMW 0.064 †

CD226 0 P1 27 (5.240, 0.190) 3.219 -0.379 GC 0.075 (-0.737, 0.038)

P6 17 (3.130, 0.072) 3.598 GW 0.065 (-0.719, 0.021)

t-test 0.046 (-0.755, -0.007)

WMW 0.018 †

CD44-2 3 P1 8 (9.410, 0.104) 4.451 0.324 GC 0.069 (-0.034, 0.606)

P3 42 (6.641, 0.099) 4.127 GW 0.067 (-0.038, 0.620)

t-test 0.041 (0.016, 0.637)

WMW 0.044 †

* Estimated confidence interval.
† The Est. CI for the WMW test is not applicable.

Table 5. Testing the equality of protein abundance data from same donor at different
time points (p-value and estimated confidence interval for mean difference).

Protein Donor
Time 1 n1 (α̂1, β̂1) δ̂1

η̂ Methods p-value
Est. CI *

Time 2 n2 (α̂2, β̂2) δ̂2 (lower, upper)

CD48 P8 0 12 (13.700, 0.080) 5.112 -0.190 GC 0.045 (-0.411, -0.005)

3 34 (17.700, 0.086) 5.302 GW 0.042 (-0.413, -0.006)

t-test 0.054 (-0.392, 0.004)

WMW 0.097 †

CD48 P8 0 12 (13.700, 0.080) 5.112 0.040 GC 0.761 (-0.207, 0.281)

7 20 (9.750, 0.058) 5.072 GW 0.702 (-0.195, 0.268)

t-test 0.710 (-0.187, 0.270)

WMW 0.526 †

CD45-1 P8 0 12 (0.730, 0.174) 0.611 -0.914 GC 0.049 (-3.100, -0.005)

3 34 (1.610, 0.249) 1.525 GW 0.037 (-2.460, -0.071)

t-test 0.124 (-2.120, 0.286)

WMW 0.101 †

CD45-1 P8 0 12 (0.730, 0.174) 0.611 0.139 GC 0.923 (-2.150, 1.800)

7 20 (0.615, 0.141) 0.472 GW 0.900 (-1.520, 1.480)

t-test 0.832 (-1.260, 1.550)

WMW 0.953 †

CD337 P8 0 12 (3.190, 0.608) 1.493 0.860 GC 0.026 (0.108, 1.870)

3 34 (0.648, 0.134) 0.633 GW 0.028 (0.135, 1.670)

t-test 0.023 (0.124, 1.590)

WMW 0.506 †

CD337 P8 0 12 (3.190, 0.608) 1.493 0.127 GC 0.699 (-0.516, 0.831)

7 20 (1.510, 0.267) 1.366 GW 0.689 (-0.493, 0.788)

t-test 0.685 (-0.489, 0.735)

WMW 0.833 †

* Estimated confidence interval.
† The Est. CI for the WMW test is not applicable.

May 15, 2024 31/31


	Introduction
	The setting
	Motivation
	Justification of using Exp-gamma distribution for cellular protein abundance measurements
	Two sample t-test and the Wilcoxon-Mann-Whitney (WMW) test could be misleading

	Inferences on the mean difference of two independent Exp-gamma distributions
	The method based on generalized inference
	Generalized pivots for population parameters: A review
	The generalized inference methods for hypothesis testing and confidence interval estimation for two independent Exp-gamma means
	Computing algorithm

	The parametric bootstrap method

	Simulation studies
	Hypothesis testing
	Confidence intervals

	Data examples
	Summary and discussion

